| 注册
首页|期刊导航|船电技术|基于RBF神经网络的船舶主机滑模控制算法仿真

基于RBF神经网络的船舶主机滑模控制算法仿真

朱思远 熊源

船电技术2025,Vol.45Issue(1):12-17,6.
船电技术2025,Vol.45Issue(1):12-17,6.

基于RBF神经网络的船舶主机滑模控制算法仿真

Simulation of sliding mode control algorithm for ship main engine with RBF neural network

朱思远 1熊源1

作者信息

  • 1. 武汉船用电力推进装置研究所,武汉 430064
  • 折叠

摘要

Abstract

This article takes a certain type of diesel engine as the research object,and uses MATLAB/Simulink to establish the average value model of the diesel engine.For the main control part of the diesel engine,traditional exponential convergence rate sliding mode variable structure control and radial basis function(RBF)neural network-based sliding mode controller are designed.The two control algorithms are compared using the constructed average value model of the diesel engine.The results indicate that the RBF based radial basis neural network sliding mode controller has better reliability,faster response speed,and better control performance compared to traditional sliding mode controllers.

关键词

船舶柴油机控制/平均值模型/RBF神经网络

Key words

marine diesel engine control/mean value model/RBF neural network

分类

交通工程

引用本文复制引用

朱思远,熊源..基于RBF神经网络的船舶主机滑模控制算法仿真[J].船电技术,2025,45(1):12-17,6.

船电技术

1003-4862

访问量0
|
下载量0
段落导航相关论文