| 注册
首页|期刊导航|铁道科学与工程学报|基于自适应扩散图卷积注意力网络的地铁客流预测

基于自适应扩散图卷积注意力网络的地铁客流预测

唐郑熠 黄嘉欢 王金水 邢树礼

铁道科学与工程学报2024,Vol.21Issue(12):4910-4923,14.
铁道科学与工程学报2024,Vol.21Issue(12):4910-4923,14.DOI:10.19713/j.cnki.43-1423/u.T20240295

基于自适应扩散图卷积注意力网络的地铁客流预测

Metro passenger flow prediction based on the adaptive diffusion graph convolution attention network

唐郑熠 1黄嘉欢 2王金水 1邢树礼2

作者信息

  • 1. 福建理工大学 计算机科学与数学学院,福建 福州 350118||福建理工大学 福建省大数据挖掘与应用技术重点实验室,福建 福州 350118||湖南工商大学 移动商务智能湖南省重点实验室,湖南 长沙 410205
  • 2. 福建理工大学 计算机科学与数学学院,福建 福州 350118||福建理工大学 福建省大数据挖掘与应用技术重点实验室,福建 福州 350118
  • 折叠

摘要

Abstract

Accurate metro passenger flow prediction is an important strategic requirement for intelligent transportation systems to address traffic challenges,coordinate operational scheduling,and plan future developments.However,previous research that integrated graph convolutional networks with deep learning models such as recurrent neural networks,long short-term memory networks,and gated recurrent neural networks,could only extract temporal spatial correlations based on the road network map structure,while ignoring the hidden spatial correlations between metro stations and the dynamic temporal correlations over time.To mine the complex spatial and temporal correlations in the transportation data to achieve accurate metro passenger flow prediction,a method based on Adaptive Diffusion Graph Convolution Attention(ADGCA)network was proposed.The innovations of this method mainly include two aspects:first,by constructing multiple graphs and adaptive matrices combined with multi-head attention mechanisms,it is able to mine the hidden spatial correlations between metro stations.This approach optimized the inadequacy of existing methods in extracting the spatial information features of metro systems,which made the ADGCA model able to extract the spatial information features in the metro system.Second,a deep learning model component combining causal convolution,adaptive diffusion map convolution and multi-head attention mechanisms was constructed.The component can capture the dynamic spatio-temporal correlations in metro passenger flow data at both local and global levels,and is more effective in extracting complex metro passenger flow data features than previous methods.The effectiveness of the model was evaluated on two real datasets constructed from passenger swipe records of the automatic metro ticketing systems in Shanghai and Hangzhou.The research results indicate that the ADGCA model can extract more realistic dynamic spatio-temporal correlations compared to existing baseline models,thereby effectively reducing prediction error.The prediction accuracy indices of the ADGCA model are better than the baseline model in all prediction time steps.The research findings provide more precise data support for further optimizing urban metro operation plans and ensuring the safe and efficient operation of metros.

关键词

智能交通/地铁客流预测/自适应扩散图卷积/因果卷积/多头注意力

Key words

intelligent transportation/metro passenger flow prediction/adaptive diffusion graph convolution/causal convolution/multi-head attention

分类

交通工程

引用本文复制引用

唐郑熠,黄嘉欢,王金水,邢树礼..基于自适应扩散图卷积注意力网络的地铁客流预测[J].铁道科学与工程学报,2024,21(12):4910-4923,14.

基金项目

福建省自然科学基金资助项目(2022J01933) (2022J01933)

湖南省重点实验室开放研究基金资助项目(2015TP1002) (2015TP1002)

铁道科学与工程学报

OA北大核心CSTPCDEI

1672-7029

访问量0
|
下载量0
段落导航相关论文