| 注册
首页|期刊导航|电力建设|基于CEEMDAN-CSO-LSTM-MTL的综合能源系统多元负荷预测

基于CEEMDAN-CSO-LSTM-MTL的综合能源系统多元负荷预测

王永利 刘泽强 董焕然 李德鑫 陈鑫 郭璐 王佳蕊

电力建设2025,Vol.46Issue(1):72-85,14.
电力建设2025,Vol.46Issue(1):72-85,14.DOI:10.12204/j.issn.1000-7229.2025.01.007

基于CEEMDAN-CSO-LSTM-MTL的综合能源系统多元负荷预测

Multivariate Load Forecasting of Integrated Energy System Based on CEEMDAN-CSO-LSTM-MTL

王永利 1刘泽强 1董焕然 1李德鑫 2陈鑫 1郭璐 1王佳蕊2

作者信息

  • 1. 华北电力大学经济与管理学院,北京市 102206
  • 2. 国网吉林省电力有限公司电力科学研究院,长春市 130000
  • 折叠

摘要

Abstract

With the continuous development of integrated energy systems and the flexible interaction between load side and source side resources,existing single load forecasting methods are difficult to grasp the coupling characteristics between multiple loads,resulting in insufficient accuracy in the prediction of multiple loads in integrated energy systems.Based on this,a comprehensive energy system short-term load forecasting model is proposed,which combines complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),cross optimization algorithm(CSO),long short term memory(LSTM)network,and multi task learning(MTL).Firstly,preprocess the collected raw load data and calculate the actual load value considering system energy loss;Secondly,the maximum information coefficient(MIC)is used to analyze the correlation between multiple loads and between multiple loads and weather factors,and to extract strongly correlated variables of multiple loads;Once again,the strongly correlated variables of multiple loads are substituted into CEEMDAN,and the load data is decomposed into stationary subsequences;Then,the feature sequence is substituted into the LSTM-MTL shared layer and the CSO algorithm is used to optimize the prediction model,achieving collaborative prediction of multiple loads;Finally,the performance of the constructed model was validated using a multivariate load dataset from a chemical park in Jilin City,Jilin Province,China.The results show that compared with traditional prediction models,the constructed model can effectively improve the prediction accuracy of multiple loads in the integrated energy system.

关键词

负荷预测/综合能源系统/多元负荷/长短期记忆网络/多任务学习

Key words

load forecasting/integrated energy system/multiple load/LSTM/MTL

分类

动力与电气工程

引用本文复制引用

王永利,刘泽强,董焕然,李德鑫,陈鑫,郭璐,王佳蕊..基于CEEMDAN-CSO-LSTM-MTL的综合能源系统多元负荷预测[J].电力建设,2025,46(1):72-85,14.

基金项目

教育部人文社科规划基金项目(22YJA630093) This work is supported by Ministry of Education Humanities and Social Science Planning Fund Project(No.22YJA630093). (22YJA630093)

电力建设

OA北大核心

1000-7229

访问量0
|
下载量0
段落导航相关论文