首页|期刊导航|电力建设|基于CEEMDAN-CSO-LSTM-MTL的综合能源系统多元负荷预测

基于CEEMDAN-CSO-LSTM-MTL的综合能源系统多元负荷预测OA北大核心

Multivariate Load Forecasting of Integrated Energy System Based on CEEMDAN-CSO-LSTM-MTL

中文摘要英文摘要

随着综合能源系统的不断发展、负荷侧与源侧资源灵活互动,现有单一负荷预测方法难以把握多元负荷间的耦合特征,导致综合能源系统多元负荷预测精度不足.基于此,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)-纵横交叉算法(crisscross optimization algorithm,CSO)-长短期记忆(long short-term memory,LSTM)网络-多任务学习(multi-task learning,MTL)的综合能源系统短期负荷预测模型.首先,对采集的原始负荷数据进行预处理,计算考虑系统能量损耗的实际负荷值;其次,采用最大信息系数(maximal information coefficient,MIC)分析多元负荷之间、多元负荷与天气因素之间的相关性,提取多元负荷的强相关性变量;再次,将多元负荷的强相关性变量代入CEEMDAN,将负荷数据分解为平稳的子序列;然后,将特征序列代入LSTM-MTL共享层,并利用CSO算法优化预测模型,实现多元负荷的协同预测;最后,以我国吉林省吉林市某化工园区的多元负荷数据集为例对所建模型的性能进行验证.结果表明,与传统预测模型相比,所建模型能有效提升综合能源系统多元负荷的预测精度.

With the continuous development of integrated energy systems and the flexible interaction between load side and source side resources,existing single load forecasting methods are difficult to grasp the coupling characteristics between multiple loads,resulting in insufficient accuracy in the prediction of multiple loads in integrated energy systems.Based on this,a comprehensive energy system short-term load forecasting model is proposed,which combines complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),cross optimization algorithm(CSO),long short term memory(LSTM)network,and multi task learning(MTL).Firstly,preprocess the collected raw load data and calculate the actual load value considering system energy loss;Secondly,the maximum information coefficient(MIC)is used to analyze the correlation between multiple loads and between multiple loads and weather factors,and to extract strongly correlated variables of multiple loads;Once again,the strongly correlated variables of multiple loads are substituted into CEEMDAN,and the load data is decomposed into stationary subsequences;Then,the feature sequence is substituted into the LSTM-MTL shared layer and the CSO algorithm is used to optimize the prediction model,achieving collaborative prediction of multiple loads;Finally,the performance of the constructed model was validated using a multivariate load dataset from a chemical park in Jilin City,Jilin Province,China.The results show that compared with traditional prediction models,the constructed model can effectively improve the prediction accuracy of multiple loads in the integrated energy system.

王永利;刘泽强;董焕然;李德鑫;陈鑫;郭璐;王佳蕊

华北电力大学经济与管理学院,北京市 102206华北电力大学经济与管理学院,北京市 102206华北电力大学经济与管理学院,北京市 102206国网吉林省电力有限公司电力科学研究院,长春市 130000华北电力大学经济与管理学院,北京市 102206华北电力大学经济与管理学院,北京市 102206国网吉林省电力有限公司电力科学研究院,长春市 130000

动力与电气工程

负荷预测综合能源系统多元负荷长短期记忆网络多任务学习

load forecastingintegrated energy systemmultiple loadLSTMMTL

《电力建设》 2025 (1)

72-85,14

教育部人文社科规划基金项目(22YJA630093) This work is supported by Ministry of Education Humanities and Social Science Planning Fund Project(No.22YJA630093).

10.12204/j.issn.1000-7229.2025.01.007

评论