| 注册
首页|期刊导航|电力建设|基于深度迁移学习的电力系统暂态状态估计

基于深度迁移学习的电力系统暂态状态估计

焦昊 赵佳伟 韦磊 朱卫平 马洲俊 臧海祥

电力建设2025,Vol.46Issue(1):97-106,10.
电力建设2025,Vol.46Issue(1):97-106,10.DOI:10.12204/j.issn.1000-7229.2025.01.009

基于深度迁移学习的电力系统暂态状态估计

Transient State Estimation for Power System Based on Deep Transfer Learning

焦昊 1赵佳伟 2韦磊 3朱卫平 3马洲俊 3臧海祥2

作者信息

  • 1. 国网江苏省电力有限公司电力科学研究院,南京市 211103
  • 2. 河海大学电气与动力工程学院,南京市 211100
  • 3. 国网江苏省电力有限公司,南京市 210024
  • 折叠

摘要

Abstract

A method for transient state estimation in power systems based on deep transfer learning is proposed to accurately track transient state in real-time,which is typically challenging owing to the limited availability of fault sample data.Initially,the twin data representing the actual power system operation are generated by utilizing digital twin technology,thereby providing substantial sample data sources for transient state estimation.Subsequently,the twin datasets are partitioned into source domain and target domain datasets,and a base model is developed for state estimation in the source domain based on steady-state power system data.Finally,by applying deep transfer learning,the base model is fine-tuned using small-sample transient data in the target domain,resulting in a state-estimation model specifically adapted for transient conditions and enhancing the universality of the estimator.Simulations demonstrate that the proposed method exhibits a higher estimation accuracy and computational efficiency than that of deep neural networks without transfer learning,particularly during power system failures.

关键词

电力系统故障/数字孪生/暂态状态估计/深度迁移学习/小样本

Key words

power system fault/digital twin/transient state estimation/deep transfer learning/small sample

分类

动力与电气工程

引用本文复制引用

焦昊,赵佳伟,韦磊,朱卫平,马洲俊,臧海祥..基于深度迁移学习的电力系统暂态状态估计[J].电力建设,2025,46(1):97-106,10.

基金项目

This work is supported by State Grid Jiangsu Electric Power Co.,Ltd.Research Program(No.J2023121). 国网江苏省电力有限公司科技项目(J2023121) (No.J2023121)

电力建设

OA北大核心

1000-7229

访问量0
|
下载量0
段落导航相关论文