基于复杂网络社区检测算法的元器件选用推荐方法OA
Component selection recommendation method based on complex network community detection algorithm
宇航元器件选用是航天任务中的重要环节,空间环境复杂苛刻,对宇航用元器件的可靠性和性能要求极高.传统的元器件选用方法通常依赖于专家经验和单一指标评估,难以全面考虑元器件之间的复杂关联和多维度性能指标.复杂网络理论的发展为元器件选用提供了一种新的思路,特别是社区检测算法,可以帮助识别元器件之间的隐含关系和群体特征,从而优化选用过程,实现宇航元器件精准、快速、高效、灵活的选用.本文介绍了基于复杂网络社区检测算法的元器件选用推荐方法,提出了基于模块度优化的进化算法.该算法引入了基于节点相似度的最大生成树编码方法,还引入了一种生成初始种群的新方法和一种基于正弦的自适应变异函数,并将其用于两个元器件选用网络.该算法有效地检测出了元器件选用网络中的社区结构,实现了元器件的智能选用.
The selection of space components is crucial in the space mission.The space environment is complex and harsh,imposing ex-tremely high requirements on the reliability and performance of aerospace components.Traditional component selection methods usually rely on expert experience and a single index evaluation,making it difficult to fully consider the complex correlation and multi-dimensional performance specifications between components.The development of complex network theory provides a new approach for the compo-nent selection.In particular,community detection algorithms can help identify the potential relationships and group characteristics a-mong components,thereby optimizing the selection process and achieving precise,rapid,efficient,and flexible selection of aerospace components.In this paper,we will introduce the selection recommendation method for component selection based on complex network community detection algorithm,and propose the evolutionary algorithm based on module degree optimization.The algorithm incorpo-rates a maximum spanning tree coding method based on node similarity,a new method for generating initial populations and a sine-based adaptive variation function,and applies it to two component selection networks.The algorithm effectively detects the community struc-ture in the component selection networks,and realizes the intelligent selection of components.
张超庆;张磊;张伟;肖波;姜贸公
中国航天宇航元器件工程中心,北京 100094中国航天宇航元器件工程中心,北京 100094中国航天宇航元器件工程中心,北京 100094中国航天宇航元器件工程中心,北京 100094中国航天宇航元器件工程中心,北京 100094
电子信息工程
航天器元器件社区检测进化算法选用推荐
spacecraftcomponentscommunity detectionevolutionary algorithmselection recommendation
《集成电路与嵌入式系统》 2025 (1)
40-46,7
评论