| 注册
首页|期刊导航|福建师范大学学报(自然科学版)|基于时间感知注意力与拥塞驱动图卷积的交通流量预测

基于时间感知注意力与拥塞驱动图卷积的交通流量预测

王小军 王兴 林羽 金彪 熊金波

福建师范大学学报(自然科学版)2025,Vol.41Issue(1):1-10,10.
福建师范大学学报(自然科学版)2025,Vol.41Issue(1):1-10,10.DOI:10.12046/j.issn.1000-5277.2024060035

基于时间感知注意力与拥塞驱动图卷积的交通流量预测

Traffic Flow Prediction Model Based on Temporal-aware Attention and Congestion-driven Graph Convolutional Network

王小军 1王兴 2林羽 1金彪 2熊金波2

作者信息

  • 1. 福建师范大学计算机与网络空间安全学院,福建 福州 350117
  • 2. 福建师范大学计算机与网络空间安全学院,福建 福州 350117||福建省大数据分析与应用工程研究中心,福建 福州 350117
  • 折叠

摘要

Abstract

Current traffic flow prediction models typically rely on spatiotemporal graph neural networks(GNN)to extract spatiotemporal features.However,GNN generally constructs graph structures based on road network connectivity and the distance between sensors,often overlooking congestion information in road segments.To fully capture the dynamic spatiotemporal dependencies in traffic flow data,this paper proposes a spatiotemporal traffic flow prediction model based on Temporal-Aware Attention and Congestion-Driven Graph Convolutional Network(TCGCN).In the spatial dimension,TCGCN employs two metrics to measure traffic congestion,which are utilized to construct graph structures that reveal dynamic spatial dependencies between road segments.In the temporal dimension,TCGCN designs a time-gated causal convolutional multi-head self-attention mechanism to enhance the model's temporal awareness and local trend perception capabilities.Experimental results on two real-world traffic datasets demonstrate that TCGCN outperforms the optimal baseline model,achieving average reductions of 5.22%,5.06%,and 2.90%in the evaluation metrics of MAE,MAPE,and RMSE,respectively.

关键词

交通流量预测/交通拥塞/注意力机制/时空图神经网络

Key words

traffic flow prediction/traffic congestion/attention mechanism/GNN

分类

计算机与自动化

引用本文复制引用

王小军,王兴,林羽,金彪,熊金波..基于时间感知注意力与拥塞驱动图卷积的交通流量预测[J].福建师范大学学报(自然科学版),2025,41(1):1-10,10.

基金项目

国家自然科学基金项目(62272102) (62272102)

福建省自然科学基金项目(2024J01070) (2024J01070)

福建师范大学学报(自然科学版)

OA北大核心

1000-5277

访问量0
|
下载量0
段落导航相关论文