面向分布式数据安全共享的高速公路路网拥堵监测OA北大核心
Research on Expressway Network Congestion Monitoring for Secure Sharing of Distributed Data
应用人工智能技术对高速公路路网道路状态进行监测已成为热点,然而,数据孤岛及隐私保护是高速路网智能决策面临的挑战.为实现分布式数据安全共享及智能决策,以拥堵问题为例,提出基于联邦学习的高速路网道路拥堵状态监测策略.利用摄像头实时数据,在密态可计算的同态加密联邦学习智能决策架构下,建立基于道路区间优化的拥堵状态监测模型.结果表明,在确保分布式数据安全共享的前提下,能够有效实现高速路网道路拥堵状态监测.
The application of artificial intelligence(AI)technology for monitoring the condi-tion of expressway networks has become a prominent research area.However,challenges such as data silos and privacy protection hinder intelligent decision-making in this domain.To address these issues and enable secure sharing of distributed data for intelligent decision-making,particularly with regard to congestion,a strategy based on federated learning is proposed.This strategy employs real-time camera data and utilizes a fully homomorphic encryption scheme within the federated learning framework.This enables the establishment of an encrypted,intelligent decision-making architecture to develop a congestion status monitoring model based on optimized road segments.The results indicate that,while ensuring the security and privacy of distributed data,this approach can effec-tively monitor expressway congestion.
李林锋;陈羽中;姚毅楠;邵伟杰
福建省高速公路联网运营有限公司,福建 福州 350000福州大学计算机与大数据学院,福建 福州 350116福州大学计算机与大数据学院,福建 福州 350116福州大学计算机与大数据学院,福建 福州 350116
计算机与自动化
高速公路路网道路拥堵状态数据安全共享智能决策联邦学习同态加密
expressway networkroad congestion statussecure data sharingintelligent deci-sion-makingfederated learninghomomorphic encryption
《福建师范大学学报(自然科学版)》 2025 (1)
11-20,10
国家自然科学基金项目(62471142)福建省高校产学合作项目(2024H6006)福建高速集团十四五发展规划智慧出行重点科研攻关项目(2022Y121)
评论