| 注册
首页|期刊导航|分析化学|激光诱导击穿光谱结合混合变量选择的炉渣元素快速定量分析方法研究

激光诱导击穿光谱结合混合变量选择的炉渣元素快速定量分析方法研究

李茂刚 蔡琪 杏艳 闫春华 陈婵婵 张天龙 李华

分析化学2024,Vol.52Issue(12):1853-1864,12.
分析化学2024,Vol.52Issue(12):1853-1864,12.DOI:10.19756/j.issn.0253-3820.241297

激光诱导击穿光谱结合混合变量选择的炉渣元素快速定量分析方法研究

Rapid Quantitative Analysis of Slag Elements by Laser Induced Breakdown Spectroscopy Combined with Mixed Variable Selection

李茂刚 1蔡琪 1杏艳 2闫春华 1陈婵婵 1张天龙 3李华4

作者信息

  • 1. 西安石油大学化学化工学院,西安 710065
  • 2. 陕西省环境监测中心站,陕西省环境介质痕量污染物监测预警重点实验室,西安 710054
  • 3. 西北大学化学与材料科学学院,西安 710127
  • 4. 西安石油大学化学化工学院,西安 710065||西北大学化学与材料科学学院,西安 710127
  • 折叠

摘要

Abstract

Slag is a typical metallurgical solid waste,mainly composed of magnesium oxide,iron oxide,alumina oxide and other metal oxides.The rapid quantitative analysis of slag components is helpful to determine the content of valuable elements or components in slag,and then choose a suitable resource utilization way to achieve efficient utilization and reduce environmental pollution.In this study,a quantitative analysis method of Fe,Si and Ti in slag was proposed based on laser induced breakdown spectroscopy(LIBS)combined with machine learning algorithm.Firstly,LIBS spectra of slag samples were collected,and the characteristic spectral lines of related elements were identified through the National Institute of Standards and Technology(NIST)database.Then,the influence of different spectral preprocessing methods on the predictive performance of PLS model was investigated,and the combined performance of spectral preprocessing methods was discussed.On this basis,a mixed variable selection algorithm combining variable importance in projection(VIP)and grey wolf algorithm(GWO)was proposed to screen LIBS spectral characteristic variables of slag samples.Based on cross-validation,the parameters,thresholds,input variables and model parameters of the preprocessing method and feature screening method were optimized.A quantitative analysis model of Fe,Si and Ti in slag based on LIBS technique was established based on the optimized parameters and input variables.The results showed that the optimized model had better prediction performance than the original spectral model,with R2p of 0.9525,0.9604 and 0.9972,and RMSEp of 0.0461,0.0141 and 0.1963,respectively.It was proved that LIBS combined with machine learning algorithm provided a feasible method for the field rapid detection of slag elements.The research is expected to provide some theoretical basis and technical reference for the resource utilization of metallurgical solid waste.

关键词

激光诱导击穿光谱/化学计量学/定量分析/变量选择/炉渣

Key words

Laser induced breakdown spectroscopy/Chemometrics/Quantitative analysis/Variable selection/Slag

引用本文复制引用

李茂刚,蔡琪,杏艳,闫春华,陈婵婵,张天龙,李华..激光诱导击穿光谱结合混合变量选择的炉渣元素快速定量分析方法研究[J].分析化学,2024,52(12):1853-1864,12.

基金项目

国家自然科学基金项目(No.22173071)、陕西省环境介质痕量污染物监测预警重点实验室开放基金项目(No.SHJKFJJ202303)和西安石油大学研究生创新基金项目(No.YCX2412023)资助. Supported by the National Natural Science Foundation of China(No.22173071),the Open Fund Foundation of Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants(No.SHJKFJJ202303)and the Graduate Innovation Fund Project of Xi'an Shiyou University(No.YCX2412023). (No.22173071)

分析化学

OA北大核心CSTPCD

0253-3820

访问量0
|
下载量0
段落导航相关论文