含能金属颗粒释能特性模拟及预测方法研究进展OA北大核心CSTPCD
Advancements in simulation and prediction method of energy release properties of energetic metal particles
铝(Al)粉、铁(Fe)粉等金属含能材料作为非常规燃料,具有能量密度高、无碳等特点,在固体推进、可再生能源利用等领域受到越来越广泛的关注.从模拟预测方法角度综述了Al、Fe等金属颗粒的释能特性预测及建模方法研究进展,具体包括微观层面的量子化学计算方法和分子动力学模拟方法以及宏观层面的单颗粒燃烧模型和颗粒群燃烧模型,并且归纳了不同尺度模拟方法的优缺点、现存问题与挑战.最后对含能金属颗粒释能特性模拟及预测方法研究进行展望:一方面,可以通过机器学习、简化宏观问题等方法以提高计算效率并降低计算量,实现对金属颗粒释能过程的多尺度耦合模拟;另一方面,可以构建基于数据驱动或机理-数据融合模型来更好地处理可能存在的非线性及不确定性问题.
Energetic metal materials such as aluminum and iron powder,serving as unconventional fuels,were of high energy density and carbon-free nature,which have attracted more and more attention in the fields of solid propulsion and renewable energy utilization.Some advancements in prediction and simulation methods for aluminum and iron and other metal particles were reviewed,specifically including quantum chemical calculation methods and molecular dynamics simulations at the microscopic level,as well as single-particle combustion models and particle cloud combustion models at the macroscopic level.Furthermore,the advantages and disadvantages of simulation methods at various scales as well as the existing issues and challenges were summarized.Finally,the simulation and prediction methods of energy release characteristics of energetic metal particles were prospected.On the one hand,the multi-scale coupling simulation of energy release process of metal particles can be realized by machine learning,simplifying macro problems and other methods to improve the calculation efficiency and reduce the calculation costs;on the other hand,data-driven or mechanism-data-driven modeling can be constructed to better deal with the possible nonlinear and uncertain problem.
汪程峄;孔成栋
上海交通大学 热能工程研究所,上海 200240上海交通大学 热能工程研究所,上海 200240
金属含能材料释能特性数值模拟机器学习多尺度耦合
energetic metal materialsenergy release propertiesnumerical simulationmachine learningmulti-scale coupling
《固体火箭技术》 2024 (6)
755-763,9
评论