首页|期刊导航|计算机应用研究|基于深度学习的低光照图像增强研究综述

基于深度学习的低光照图像增强研究综述OA北大核心

Review of low light image enhancement based on deep learning

中文摘要英文摘要

低光照图像增强的目的是优化在光线不足的环境中捕获的图像,提升其亮度和对比度.目前,深度学习在低光照图像增强领域已成为主要方法,因此,有必要对基于深度学习的方法进行综述.首先,将传统低光照图像增强方法进行分类,并分析与总结其优缺点.接着,重点介绍基于深度学习的方法,将其分为有监督和无监督两大类,分别总结其优缺点,随后总结应用在深度学习下的损失函数.其次,对常用的数据集和评价指标进行简要总结,使用信息熵对传统方法进行量化比较,采用峰值信噪比和结构相似性对基于深度学习的方法进行客观评价.最后,总结目前方法存在的不足,并对未来的研究方向进行展望.

The aim of low-light image enhancement is to optimize images captured in low-light environments by improving their brightness and contrast.Currently,deep learning has become the main method in the field of low-light image enhancement,necessitating a review of deep learning-based methods.First,this paper classified traditional methods of low-light image en-hancement and analyzed and summarized their advantages and disadvantages.Then,this paper focused on deep learning-based methods,classified them into supervised and unsupervised categories,and summarized their respective advantages and disad-vantages.This paper also summarized the loss functions applied in deep learning approaches.Next,this paper briefly summa-rized the commonly used datasets and evaluation metrics,using information entropy to quantitatively compare traditional me-thods,and employing peak signal-to-noise ratio and structural similarity to objectively evaluate deep learning-based methods.Finally,this paper summarized the shortcomings of current methods and prospect future research directions.

孙福艳;吕准;吕宗旺

河南工业大学信息科学与工程学院,郑州 450001||中原智慧园区与智能建筑研究院,郑州 450001

计算机与自动化

低光照图像增强深度学习有监督特征提取无监督

low-light image enhancementdeep learningsupervisedfeature extractionunsupervised

《计算机应用研究》 2025 (001)

19-27 / 9

国家重点研发计划资助项目(2022YFD2100202)

10.19734/j.issn.1001-3695.2024.06.0176

评论