| 注册
首页|期刊导航|计算机应用研究|融合Bi-LSTM与多头注意力的分层强化学习推理方法

融合Bi-LSTM与多头注意力的分层强化学习推理方法

李卫军 刘世侠 刘雪洋 丁建平 苏易礌 王子怡

计算机应用研究2025,Vol.42Issue(1):71-77,7.
计算机应用研究2025,Vol.42Issue(1):71-77,7.DOI:10.19734/j.issn.1001-3695.2024.06.0197

融合Bi-LSTM与多头注意力的分层强化学习推理方法

Hierarchical reinforcement learning knowledge reasoning method integrating Bi-LSTM and multi-head attention

李卫军 1刘世侠 2刘雪洋 2丁建平 2苏易礌 2王子怡2

作者信息

  • 1. 北方民族大学计算机科学与工程学院,银川 750021||北方民族大学图形图像智能处理国家民委重点实验室,银川 750021
  • 2. 北方民族大学计算机科学与工程学院,银川 750021
  • 折叠

摘要

Abstract

Knowledge reasoning is a critical task in knowledge graph completion and has garnered significant academic atten-tion.Addressing issues such as poor interpretability,inability to utilize hidden semantic information,and sparse rewards,this paper proposed a hierarchical reinforcement learning method integrating Bi-LSTM and multi-head attention mechanisms.The knowledge graph was clustered via spectral clustering,enabling agents to reason between clusters and entities.The Bi-LSTM and multi-head attention mechanism module processed the agent's historical information,effectively uncovering and utilizing hidden semantic information in the knowledge graph.The high-level agent selected the cluster containing the target entity through a hierarchical policy network,guiding the low-level agent in entity reasoning.Reinforcement learning allows the agents to solve interpretability issues,and a mutual reward mechanism addresses sparse rewards by rewarding agents'action choices and search paths.Experimental results on FB15K-237,WN18RR,and NELL-995 datasets show that the proposed method captures long-term dependencies in sequential data for long-path reasoning,outperforming similar methods in reasoning tasks.

关键词

知识推理/分层强化学习/Bi-LSTM/多头注意力机制

Key words

knowledge reasoning/layered reinforcement learning/Bi-LSTM/multi-head attention mechanism

分类

计算机与自动化

引用本文复制引用

李卫军,刘世侠,刘雪洋,丁建平,苏易礌,王子怡..融合Bi-LSTM与多头注意力的分层强化学习推理方法[J].计算机应用研究,2025,42(1):71-77,7.

基金项目

宁夏高等学校科学研究项目(NYG2024086) (NYG2024086)

宁夏自然科学基金资助项目 (2021AAC03215) (2021AAC03215)

中央高校科研资助项目(2022PT_S04,2021JCYJ12) (2022PT_S04,2021JCYJ12)

国家自然科学基金资助项目(62066038,61962001) (62066038,61962001)

计算机应用研究

OA北大核心

1001-3695

访问量3
|
下载量0
段落导航相关论文