| 注册
首页|期刊导航|南京大学学报(自然科学版)|基于NML-MaxViT的胶质瘤P53突变状态预测

基于NML-MaxViT的胶质瘤P53突变状态预测

梁峰宁 赵钰琳 赵藤 曹亚茹 丁世飞 朱红

南京大学学报(自然科学版)2024,Vol.60Issue(6):908-919,12.
南京大学学报(自然科学版)2024,Vol.60Issue(6):908-919,12.DOI:10.13232/j.cnki.jnju.2024.06.003

基于NML-MaxViT的胶质瘤P53突变状态预测

Prediction of glioma P53 mutation status based on NML-MaxViT

梁峰宁 1赵钰琳 1赵藤 1曹亚茹 1丁世飞 2朱红1

作者信息

  • 1. 徐州医科大学医学信息与工程学院,徐州,210004
  • 2. 中国矿业大学计算机科学与技术学院,徐州,221116
  • 折叠

摘要

Abstract

A deep learning-based semi-supervised prediction method for the P53 mutation status of glioma is proposed to address the current problems of poor utilisation of glioma image data and incomplete feature extraction.Firstly,NUGMB(Non-Uniform Granularity Multi-Batch)grey level partitioning algorithm is proposed to optimize the preprocessing methods of glioma MR image.Secondly,the K-means clustering algorithm of MCC(Multi Center Collaboration)is proposed for pseudo-labeling of glioma image data.Finally,a novel attention mechanism,LWAM(Local Longer and Wider Attention Modules),is proposed to construct an improved MaxViT model based on LWAM for the preoperative non-invasive prediction of the P53 mutation status of glioma.The NML-MaxViT model based on NUGMB,MCC and LWAM algorithms predicts the P53 mutation status of glioma with an accuracy of 96.23%,which achieves non-invasive predictions to assist physicians in clinical diagnosis and treatment.

关键词

脑胶质瘤/P53/伪标签/非均匀灰度等级划分/注意力机制改进

Key words

glioma/P53/pseudo-labelling/non-uniform gray scale division/attention mechanism improvement

分类

医药卫生

引用本文复制引用

梁峰宁,赵钰琳,赵藤,曹亚茹,丁世飞,朱红..基于NML-MaxViT的胶质瘤P53突变状态预测[J].南京大学学报(自然科学版),2024,60(6):908-919,12.

基金项目

国家自然科学基金(62102345),江苏省卫生健康委医学科研项目(Z2020032),徐州市重点研发计划(KC22117) (62102345)

南京大学学报(自然科学版)

OA北大核心CSTPCD

0469-5097

访问量0
|
下载量0
段落导航相关论文