首页|期刊导航|南京大学学报(自然科学版)|基于APDFinformer模型的金融数据的多元时序预测

基于APDFinformer模型的金融数据的多元时序预测OA北大核心CSTPCD

Multivariate time series forecasting of financial data based on the APDFinformer model

中文摘要英文摘要

最近,多元时间序列(Multivariate Time Series,MTS)预测逐渐走入人们的视野,特别是许多基于Transformer的模型已经显示出巨大的潜力,然而,现有的基于Transformer的模型主要关注跨时间依赖性的建模,往往忽略了不同变量之间的依赖性,但这对MTS预测至关重要.基于此,提出一种新型的多元时间序列预测模型APDFinformer,旨在应对金融市场复杂多变的特性.该模型结合了自适应多尺度标识器(Adaptive Multi-Scale Identifier,AMSI),能够提取时间序列在不同尺度上的信息,帮助模型降低噪声对时间序列的影响,并捕获不同尺度之间的交互作用.其次,对处理完成的多元时序数据,利用Decomposition方法分解为趋势项和季节项,其中,对趋势项信息进行简单的线性处理,对季节项数据则根据PatchTST思想进行切块来缩短序列长度以表征局部特征,使其保留局部语义信息,有利于模型分析时间步之间的关联.实验结果显示,和传统方法以及类Transformer的各种模型相比,APDFinformer能够更准确地捕捉金融市场的复杂动态,预测精度更高.具体地,在三个加密货币数据集上,和Transformer模型相比,APDFinformer模型的MSE(Mean Square Error)降低了 54%,24%和 60%,MAE(Mean Absolute Error)降低了 39%,22%和 44%,证明 APDFinformer在金融领域多元时序预测方面是更可靠的预测工具,也为基于Transformer模型的其他应用领域提供了有益的启示,以满足不断变化的金融市场需求.

Recently,the prediction of Multivariate Time Series(MTS)has gradually come into focus,especially with many Transformer-based models showing tremendous potential.However,existing Transformer-based models mainly focus on modeling cross-temporal dependencies,often overlooking the dependencies among different variables,which are crucial for MTS prediction.Therefore,this paper proposes a novel Multivariate Time Series prediction model,namely APDFinformer,designed to address the complex and dynamic nature of financial markets.The model integrates the Adaptive Multi-Scale Identifier(AMSI),which extracts information from time series at different scales,helping reduce the impact of noise on time series and capture the interactions across different scales.Additionally,for the processed Multivariate Time Series data,the model utilizes the Decomposition method to divide it into trend and seasonal components.The trend component undergoes a simple linear processing,while the seasonal component,following the PatchTST approach,is sliced to shorten the sequence length,representing local features.This is advantageous for retaining local semantic information,facilitating the model's analysis of the correlations between time steps.Experimental results demonstrate that compared to traditional methods and various models similar to the Transformer model,APDFinformer more accurately captures the complex dynamics of financial markets and exhibits higher prediction accuracy.Specifically,compared to the Transformer model,APDFinformer reduces the MSE(Mean Squared Error)by 54%,24%,and 60%on the three selected cryptocurrency datasets,along with a reduction in MAE(Mean Absolute Error)by 39%,22%,and 44%.This study suggests that APDFinformer is a more reliable prediction tool for MTS in the financial domain and provides valuable insights for other application domains based on the Transformer model,meeting the evolving demands of financial markets.

朱晓彤;林培光;孙玫;崔超然

山东财经大学计算机科学与技术学院,济南,250014山东财经大学财政税务学院,济南,250014

计算机与自动化

APDFinformer多元时序预测金融数据PatchTSTAMSI

APDFinformermultivariate time series forecastingfinancial dataPatchTSTAMSI

《南京大学学报(自然科学版)》 2024 (006)

930-939 / 10

国家自然科学基金(61802230)

10.13232/j.cnki.jnju.2024.06.005

评论