| 注册
首页|期刊导航|南京大学学报(自然科学版)|融入模体信息的多层网络社区发现算法

融入模体信息的多层网络社区发现算法

赵兴旺 张超 梁吉业

南京大学学报(自然科学版)2024,Vol.60Issue(6):954-969,16.
南京大学学报(自然科学版)2024,Vol.60Issue(6):954-969,16.DOI:10.13232/j.cnki.jnju.2024.06.007

融入模体信息的多层网络社区发现算法

Multi-layer network community discovery algorithm incorporating motif information

赵兴旺 1张超 2梁吉业1

作者信息

  • 1. 山西大学计算机与信息技术学院,太原,030006||计算智能与中文信息处理教育部重点实验室(山西大学),太原,030006
  • 2. 山西大学计算机与信息技术学院,太原,030006
  • 折叠

摘要

Abstract

The multi-layer network community discovery algorithm aims to reveal the community structure of complex networks and has received widespread attention in recent years.However,existing algorithms only focus on the low-order structural information between nodes when measuring node similarity,ignoring the utilization of high-order structural information.Moreover,when fusing information from different layers of the network,there is a lack of consideration for the differences between different layers.To address these issues,the paper proposes a multi-layer network community discovery algorithm incorporating motif information.Specifically,firstly,each layer calculates a high-order adjacency matrix based on the motif information,fuses it with a adjacency matrix to obtain a reconstruction matrix,and then enhances the reconstruction matrix based on the importance of node neighbors to obtain a similarity matrix between nodes.Secondly,based on the reconstruction matrix,the importance of each layer of the network is calculated,and weighted fusion is used to obtain a unified similarity matrix.Finally,based on the obtained similarity matrix,the node influence is calculated,and the vector representation of the nodes is iteratively updated through the node embedding representation method to obtain the final embedding representation.Comparative experiments were conducted with existing multi-layer network community discovery algorithms on artificial multi-layer networks and real multi-layer network data.The results indicate that the proposed algorithm outperforms existing algorithms in terms of multi-layer modularity and normalized mutual information.

关键词

多层网络/社区发现/高阶信息/节点相似度/嵌入表示

Key words

multilayer network/community detection/high-order information/node similarity/embedded representation

分类

信息技术与安全科学

引用本文复制引用

赵兴旺,张超,梁吉业..融入模体信息的多层网络社区发现算法[J].南京大学学报(自然科学版),2024,60(6):954-969,16.

基金项目

国家自然科学基金(62072293,U21A20473),山西省基础研究计划(202403021211086,202303021221054),山西省回国留学人员科研资助项目(2024-002) (62072293,U21A20473)

南京大学学报(自然科学版)

OA北大核心CSTPCD

0469-5097

访问量0
|
下载量0
段落导航相关论文