首页|期刊导航|南京大学学报(自然科学版)|基于大模型和权威新闻增强的可迭代谣言检测方法

基于大模型和权威新闻增强的可迭代谣言检测方法OA北大核心CSTPCD

Large language model and real news enhanced iterative rumor detection framework

中文摘要英文摘要

当前社交媒体用户数量大,社交谣言内容涉及的领域变化快,因此自动谣言检测器须快速适应变化的领域,特别是新兴领域且保持检测能力仍然面临着巨大挑战.针对该挑战,提出了一种基于大语言模型和权威新闻的迭代式谣言检测框架LaReF,融合了大语言模型在自然语言理解方面的优势和权威新闻的可信度,通过主动学习的方法持续优化谣言检测模型.具体地,LaReF包括权威新闻检索模块,利用权威新闻数据集来增强模型的检测能力;大语言模型特征提取模块与思维模式学习模块,通过提示模板和注意力机制来提取特征并学习大语言模型的思维模式;特征有效性预测模块自动评估每个特征的重要性并调整权重,以及多特征融合预测模块将大语言模型特征、样本语义信息和权威新闻信息融合用于谣言检测.实验结果表明,LaReF在谣言检测任务中表现出良好的性能,能有效地识别社交媒体上新兴领域的谣言传播,为构建网络空间信息安全生态提供了一种可行的解决方案.

In the context of the rapidly evolving landscape of social media,where the number of users is substantial and the domains covered by social rumors shift swiftly,the challenge of developing an automated rumor detection system that quickly adapts to emerging domains while maintaining its detection capability remains significant.To address this challenge,this paper proposes an iterative rumor detection framework,LaReF,based on large language models and authoritative news sources.This framework leverages the strengths of large language models in natural language understanding and the credibility of authoritative news through an active learning approach to continuously optimize the rumor detection model.Specifically,LaReF comprises several key modules,an authoritative news retrieval module that enhances the model's detection capability using a dataset of authoritative news,a large language model feature extraction module and a cognitive pattern learning module,which utilizes prompt templates and attention mechanisms to extract features and learn the cognitive patterns of large language models,a feature validity prediction module,which automatically evaluates the importance of each feature and adjusts the weights accordingly,and a multi-feature fusion prediction module that integrates large language model features,sample semantic information,and authoritative news information for rumor detection.Experimental results demonstrate that LaReF exhibits strong performance in rumor detection tasks,effectively identifying the dissemination of rumors in emerging domains on social media.This provides a viable solution for constructing an information security ecosystem in cyberspace.

邵浙杰;蔡国永;刘庆华;商云娴

桂林电子科技大学计算机与信息安全学院,桂林,541004||广西可信软件重点实验室,桂林,541004

计算机与自动化

谣言检测大语言模型主动学习社交媒体标注成本

rumor detectionlarge language modelactive learningsocial mediaannotation costs

《南京大学学报(自然科学版)》 2024 (006)

970-980 / 11

国家自然科学基金(62366010),广西自然科学基金(2024GXNSFAA010374)

10.13232/j.cnki.jnju.2024.06.008

评论