首页|期刊导航|南京农业大学学报|无人机遥感作物估产研究进展

无人机遥感作物估产研究进展OA北大核心

Research progress in crop yield estimation using unmanned aerial vehicle-based remote sensing

中文摘要英文摘要

快速、准确估测作物产量不仅有利于提前掌握粮食生产状况,而且对国家粮食政策的制定至关重要.无人机遥感技术因其快速、便捷、成本低等优势,以及可同时搭载多种传感器获取高时空分辨率影像,在作物产量估测研究中发挥了重要作用.本文首先介绍了无人机遥感估产的相关背景;其次对近二十年来无人机遥感估产的研究现状进行了概述,分别从无人机平台、传感器、估产模型构建等方面重点综述了近年来国内外无人机遥感估产的研究进展;最后讨论了影响无人机遥感估产精度的因素、尚未解决的关键技术问题以及无人机遥感估产的未来发展前景.本文可为了解无人机遥感估产研究前沿、技术瓶颈、发展前景提供重要参考,为精确栽培、智慧育种提供技术支撑.

Rapid and accurate estimation of crop yield is not only beneficial for early acquisition of food production status,but also crucial for the national food policies making.Unmanned aerial vehicle(UAV)remote sensing technology has played an important role in crop yield estimation due to its advantages of speed,convenience,and low cost,as well as the ability to simultaneously carry multiple sensors to obtain images with high spatio-temporal resolution.Firstly,this article introduced the relevant background of UAV remote sensing production estimation.Secondly,an overview of the research status of UAV remote sensing estimation in the past two decades was provided,with a focus on summarizing the research progress from the aspects of UAV platforms,sensors,and model construction method both domestically and internationally.Finally,the factors that affect the accuracy of yield estimation,unresolved key technical issues,and the future development prospects of UAV remote sensing were discussed.This article can provide important references for understanding the forefront,technological bottlenecks,and development prospects of yield estimation using UAV remote sensing,and give technical support for precision farming and smart breeding.

郑恒彪;程涛;吉文翰;郭彩丽;张小虎;邱小雷;姚霞;江冲亚;朱艳;曹卫星

南京农业大学国家信息农业工程技术中心/智慧农业研究院/智慧农业教育部工程研究中心/农业农村部农作物系统分析与决策重点实验室/江苏省信息农业重点实验室/现代作物生产省部共建协同创新中心,江苏南京 210095

测绘与仪器

作物产量估测无人机遥感传感器建模方法研究进展

cropyieldestimationunmanned aerial vehicle remote sensingsensorsmodel construction methodresearch progress

《南京农业大学学报》 2025 (001)

1-13 / 13

国家重点研发计划项目(2022YFD2001100);国家自然科学基金项目(32101617);江苏省重点实验室专项(KLIAZZ2301)

10.7685/jnau.202404020

评论