首页|期刊导航|深圳大学学报(理工版)|面向法律领域的实体和关系抽取

面向法律领域的实体和关系抽取OA北大核心

Entity and relation extraction in the legal domain

中文摘要英文摘要

中文司法领域的实体和关系抽取技术在提高办案效率方面具有重要作用,但现有的关系抽取模型缺乏领域知识且难以处理重叠实体,造成难以准确区分和提取实体与关系等问题.通过引入领域知识,提出一种法律信息增强模块,增强了用所提法律潜在关系与全局对应(legal potential relationship and global correspondence,LPRGC)模型理解法律文本中术语、规则和上下文信息的能力,从而提高了实体和关系的识别准确性,进而提升了实体和关系抽取算法的性能.为解决重叠实体问题,设计了一种基于潜在关系和实体对齐的关系抽取方法.通过精确标注实体位置,筛选潜在关系,并利用全局矩阵对齐实体,解决重叠实体的关系抽取问题,能够更准确地捕捉到重叠实体之间的关系,并有效地将其映射到正确的实体对上,从而提高抽取结果的准确性.在中国法律智能技术评测数据集上进行实体和关系抽取实验,结果表明,LPRGC模型的准确率、召回率和F1值分别为85.21%、81.19%和83.15%,均优于对比模型,特别是在处理实体重叠问题时,LPRGC模型在单实体重叠类型的抽取中,F1值达到了81.45%;在多实体重叠类型的抽取中,F1值达80.67%.LPRGC模型在实体和关系抽取的准确性上较现有方法有明显改进,在处理复杂法律文本中的实体重叠问题上取得了显著效果.

Entity and relation extraction technology in the Chinese judicial field plays an important role in improving case-handling efficiency.However,existing models lack domain knowledge and encounter challenges in handling overlapping entities,leading to difficulties in accurately distinguishing and extracting relationships.By introducing domain knowledge,we propose a legal information enhancement module that enhances the ability of the legal potential relationship and global correspondence(LPRGC)model to understand legal terms,rules,and contextual information,thereby improving the performance of entity and relation extraction algorithms.To address the issue of overlapping entities,we design a relationship extraction method based on latent relationships and entity alignment.By precisely annotating entity positions,filtering potential relationships,and aligning entities using a global matrix,the method accurately captures the relationships between overlapping entities and effectively maps them to the correct entity pairs,improving the accuracy of extraction results.Experiments conducted on the model using the China AI and Law Challenge(CAIL)dataset demonstrate that the model outperforms other compared models in terms of accuracy(85.21%),recall(81.19%),and F1 score(83.15%).In particular,the proposed model achieves an F1 score of 81.45%for single overlapping entities,and an F1 score of 80.67%for multiple overlapping entities.The experimental results show that the proposed LPRGC model significantly improves the accuracy of entity and relation extraction compared to existing methods,proving its effectiveness in enhancing model performance and addressing the issue of overlapping entities in complex legal texts.

刘美玲;梁龙昌

东北林业大学计算机与控制工程学院,黑龙江 哈尔滨 150040东北林业大学计算机与控制工程学院,黑龙江 哈尔滨 150040

计算机与自动化

人工智能自然语言处理司法领域关系抽取深度学习信息增强重叠实体

artificial intelligencenatural language processingjudicial field relationship extractiondeep learninginformation enhancementoverlapping entities

《深圳大学学报(理工版)》 2025 (1)

77-84,8

Natural Science Foundation of Heilongjiang Province(LH2022F002) 黑龙江省自然科学基金资助项目(LH2022F002)

10.3724/SP.J.1249.2025.01077

评论