首页|期刊导航|深圳大学学报(理工版)|基于混合模型的非侵入式负荷监测数据的生成

基于混合模型的非侵入式负荷监测数据的生成OA北大核心

Generation method of non-intrusive load monitoring data based on hybrid model

中文摘要英文摘要

非侵入式负荷监测(non-intrusive load monitoring,NILM)是一种无需进入每个用电器内部系统,仅在用户总线入口处安装监测设备的技术.在开展NILM技术研究时,往往需要收集大规模的用户负荷数据来证明所提出方法的普适性,此需求不可避免地带来了繁重的数据收集与整理负担.为克服该挑战,设计了一种结合周期信号频率不变变换(frequency invariant transformation for periodic signals,FIT-PS)原理与时间序列生成对抗网络(time series generative adversarial networks,TimeGAN)的混合模型,记为FIT-PS-TimeGAN.针对全球家庭与工业瞬态能量数据集(worldwide household and industry transient energy dataset,WHITED)中的空调、微波炉、吸尘器、冰箱和热水壶5种电器,运用FIT-PS对负荷数据集进行切割和拼接,构建TimeGAN不同状态下的训练集和测试集.评估测试集的效果发现,生成的波形数据与真实数据表现出高度一致性.进一步采用FIT-PS对训练得到的生成数据进行截取和拼接,生成满足测试需求的完整的单负荷波形和多负荷波形.对这些生成的波形与相同状态下的真实数据进行对比,结果显示两者吻合度很高.与自回归模型和生成对抗网络(generative adversarial network,GAN)模型相比,FIT-PS-TimeGAN模型在生成数据的性能方面表现更优.研究结果表明,FIT-PS-TimeGAN混合模型能够有效生成符合标准电器运行规律的波形和场景数据.

Non-intrusive load monitoring(NILM)is a technique that does not require accessing the internal system of each electrical device to monitor user's equipments,but only to monitor them at the entrance of user's bus.During the investigation of NILM techniques,it is often necessary to collect extensive user load data to confirm the applicability of proposed methods.This requirement inevitably entails a significant burden of data collection and organization.In order to overcome this challenge,we proposed a hybrid approach that combines the principle of frequency invariant transformation for periodic signals(FIT-PS)with time series generative adversarial networks(TimeGAN),denoted as FIT-PS-TimeGAN.Using a Worldwide Household and Industry Transient Energy Dataset(WHITED),we focused on five appliances:air conditioner,microwave oven,hoover,refrigerator and kettle.FIT-PS was employed to segment and stitch the load data aiming to construct training and testing sets for TimeGAN under different states.The validation results on effectiveness of testing sets demonstrated high consistency between the generated waveforms and the real data.Subsequently,FIT-PS was applied to intercept and splice the training data to generate complete single-load waveforms and multi-load waveforms that are able to meet the testing requirements.These generated waveforms were compared with real data in the same state and the comparative results showed that a favorable agreement between the generated and real data.In addition,compared with the other two generation models(autoregressive model and GAN model),FIT-PS-TimeGAN outperforms better in terms of data generation performance.In summary,the FIT-PS-TimeGAN hybrid model is capable of effectively generating waveforms and scenarios that comply with the operational principles of standard appliances.

肖勇;谈竹奎;钱斌;张俊玮;罗奕;张帆;黄军力

南方电网科学研究院有限责任公司用电与计量技术研究所,广东 广州 510663||广东省电网智能量测与先进计量企业重点实验室,广东 广州 510663贵州电网有限责任公司,贵阳贵州 550002南方电网科学研究院有限责任公司用电与计量技术研究所,广东 广州 510663||广东省电网智能量测与先进计量企业重点实验室,广东 广州 510663贵州电网有限责任公司,贵阳贵州 550002南方电网科学研究院有限责任公司用电与计量技术研究所,广东 广州 510663||广东省电网智能量测与先进计量企业重点实验室,广东 广州 510663南方电网科学研究院有限责任公司用电与计量技术研究所,广东 广州 510663||广东省电网智能量测与先进计量企业重点实验室,广东 广州 510663南方电网科学研究院有限责任公司用电与计量技术研究所,广东 广州 510663||广东省电网智能量测与先进计量企业重点实验室,广东 广州 510663

动力与电气工程

电力系统及其自动化人工智能非侵入式负荷监测数据生成方法周期信号频率不变变换时间序列生成对抗网络

power system and automationartificial intelligencenon-intrusive load monitoringdata generation methodfrequency invariant transformation for periodic signaltime series generative adversarial network

《深圳大学学报(理工版)》 2025 (1)

85-93,9

Science and Technology Project of China Southern Power Grid Corporation(GZKJXM20222417)Science and Technology Planning Project of Guangdong Province(2021B1212050014) 中国南方电网有限责任公司定向科技项目(GZKJXM20222417)广东省科技计划资助项目(2021B1212050014)

10.3724/SP.J.1249.2025.01085

评论