| 注册
首页|期刊导航|深圳大学学报(理工版)|基于混合模型的非侵入式负荷监测数据的生成

基于混合模型的非侵入式负荷监测数据的生成

肖勇 谈竹奎 钱斌 张俊玮 罗奕 张帆 黄军力

深圳大学学报(理工版)2025,Vol.42Issue(1):85-93,9.
深圳大学学报(理工版)2025,Vol.42Issue(1):85-93,9.DOI:10.3724/SP.J.1249.2025.01085

基于混合模型的非侵入式负荷监测数据的生成

Generation method of non-intrusive load monitoring data based on hybrid model

肖勇 1谈竹奎 2钱斌 1张俊玮 2罗奕 1张帆 1黄军力1

作者信息

  • 1. 南方电网科学研究院有限责任公司用电与计量技术研究所,广东 广州 510663||广东省电网智能量测与先进计量企业重点实验室,广东 广州 510663
  • 2. 贵州电网有限责任公司,贵阳贵州 550002
  • 折叠

摘要

Abstract

Non-intrusive load monitoring(NILM)is a technique that does not require accessing the internal system of each electrical device to monitor user's equipments,but only to monitor them at the entrance of user's bus.During the investigation of NILM techniques,it is often necessary to collect extensive user load data to confirm the applicability of proposed methods.This requirement inevitably entails a significant burden of data collection and organization.In order to overcome this challenge,we proposed a hybrid approach that combines the principle of frequency invariant transformation for periodic signals(FIT-PS)with time series generative adversarial networks(TimeGAN),denoted as FIT-PS-TimeGAN.Using a Worldwide Household and Industry Transient Energy Dataset(WHITED),we focused on five appliances:air conditioner,microwave oven,hoover,refrigerator and kettle.FIT-PS was employed to segment and stitch the load data aiming to construct training and testing sets for TimeGAN under different states.The validation results on effectiveness of testing sets demonstrated high consistency between the generated waveforms and the real data.Subsequently,FIT-PS was applied to intercept and splice the training data to generate complete single-load waveforms and multi-load waveforms that are able to meet the testing requirements.These generated waveforms were compared with real data in the same state and the comparative results showed that a favorable agreement between the generated and real data.In addition,compared with the other two generation models(autoregressive model and GAN model),FIT-PS-TimeGAN outperforms better in terms of data generation performance.In summary,the FIT-PS-TimeGAN hybrid model is capable of effectively generating waveforms and scenarios that comply with the operational principles of standard appliances.

关键词

电力系统及其自动化/人工智能/非侵入式负荷监测/数据生成方法/周期信号频率不变变换/时间序列生成对抗网络

Key words

power system and automation/artificial intelligence/non-intrusive load monitoring/data generation method/frequency invariant transformation for periodic signal/time series generative adversarial network

分类

动力与电气工程

引用本文复制引用

肖勇,谈竹奎,钱斌,张俊玮,罗奕,张帆,黄军力..基于混合模型的非侵入式负荷监测数据的生成[J].深圳大学学报(理工版),2025,42(1):85-93,9.

基金项目

Science and Technology Project of China Southern Power Grid Corporation(GZKJXM20222417) (GZKJXM20222417)

Science and Technology Planning Project of Guangdong Province(2021B1212050014) 中国南方电网有限责任公司定向科技项目(GZKJXM20222417) (2021B1212050014)

广东省科技计划资助项目(2021B1212050014) (2021B1212050014)

深圳大学学报(理工版)

OA北大核心

1000-2618

访问量0
|
下载量0
段落导航相关论文