基于HighD数据集的高速公路小客车换道风险分析OA北大核心
Lane-changing risk analysis of passenger cars on highways based on the HighD dataset
为探究高速公路小客车微观换道行为特性及换道风险,基于HighD数据集提取自车换道轨迹及周围车辆行驶数据,分析目标车道存在前、后车时的自车换道行为规律.以高速公路小客车换道冲突特性为基础,提取换道风险表征指标,建立基于停车距离系数的事故风险率和基于速度差的事故严重度模型,使用故障树分析法计算换道风险指数,对换道安全性进行评价,并基于k-means聚类算法将换道风险划分为4个等级;建立基于梯度提升决策树框架的换道风险预测模型,使用不同特征组合对小客车驾驶员换道风险进行预测及验证.结果表明,选取速度-加速度混合特征的换道风险预测模型预测效果最佳.研究结论可为理解高速公路小客车换道行为特性、驾驶行为模式识别以及驾驶辅助系统参数设置提供参考.
To investigate the microscopic lane-changing behavior characteristics and associated risk for passenger cars on highways,we extracted lane-changing trajectories of the subject vehicle and driving data of surrounding vehicles from the HighD dataset.The focus is on the analyzing the subject vehicle's lane-changing behavioral patterns when there are vehicles ahead and behind in the target lane.Based on the lane-change conflict characteristics of light-duty vehicles on highways,we extracted lane-change risk indicators and established models for accident risk rates based on stopping distance coefficients and accident severity based on speed differences.Fault tree analysis was employed to calculate the lane-change risk index and evaluate lane-change safety.Additionally,the lane-change risk was classified into four levels using the k-means clustering algorithm.We established a lane-changing risk prediction model based on the gradient boosted tree(GBDT)framework to predict and validate the lane-changing risk for passenger car drivers using different feature combinations.The results show that the lane change risk prediction model with selected velocity-acceleration hybrid features provides the best prediction performance,contributing to improved lane-changing safety warnings for highway passenger cars.The findings can provide references for understanding the lane-changing behavior characteristics of passenger cars on highways,driving behavior pattern recognition and the parameter settings of driver assistance systems.
刘通;杨波;杨雪琦;刘唐志;刘星良;吴攀
重庆交通大学交通运输学院,重庆 400074北方工业大学城市道路交通智能控制技术北京市重点实验室,北京 100144中国城市规划设计研究院西部分院,重庆 401120重庆交通大学交通运输学院,重庆 400074重庆交通大学交通运输学院,重庆 400074重庆交通大学交通运输学院,重庆 400074
交通运输
交通工程换道轨迹换道风险故障树分析k-means聚类梯度提升决策树
traffic engineeringlane-changing trajectorylane-changing riskfault-tree analysisk-means clusteringgradient boosting decision tree(GBDT)
《深圳大学学报(理工版)》 2025 (1)
94-104,11
National Natural Science Foundation of China(52172341,52402419)Natural Science Foundation of Chongqing(CSTB2022NSCQ-MSX0519)Talent Plan Technology Innovation and Application Development Project of Chongqing(CQYC2020030283) 国家自然科学基金资助项目(52172341,52402419)重庆市自然科学基金资助项目(CSTB2022NSCQ-MSX0519)重庆市英才计划技术创新与应用发展基金资助项目(CQYC2020030283)
评论