首页|期刊导航|天津科技大学学报|基于VMD-IBKA-ELM的电力电子电路软故障诊断

基于VMD-IBKA-ELM的电力电子电路软故障诊断OA

Soft Fault Diagnosis of Power Electronic Circuits Based on VMD-IBKA-ELM

中文摘要英文摘要

针对传统电力电子电路在软故障诊断领域的特征区分度低、诊断效率低等一系列问题,提出一种变分模态分解(VMD)结合改进的黑翅鸢搜索算法(IBKA)优化极限学习机(ELM)的故障诊断方法.首先,利用 VMD 技术将采集到的故障信号进行分解重构,并得到故障诊断的特征向量.其次,用改进后的黑翅鸢搜索算法对 ELM 的参数进行优化,得到 IBKA-ELM 分类模型;IBKA 采用 Sine 映射初始化种群,随机选择 3 个不同的个体进行差分变异操作,更新领导者位置,在领导者位置更新处引入自适应惯性权重因子,可有效提高算法的寻优能力和收敛速度.最后,通过150 W的Boost电路对本文方法进行实验验证.实验结果显示,VMD结合IBKA-ELM的故障诊断方法在实际诊断中的精度均达到99%以上.

To address the problems of low feature differentiation and low diagnostic efficiency of traditional power elec-tronic circuits in the field of soft fault diagnosis,a fault diagnosis method based on variational mode decomposi-tion(VMD)combined with improved black-winged kite search algorithm(IBKA)to optimize extreme learning machine(ELM)is proposed in this article.Firstly,the collected fault signal is decomposed and reconstructed by using VMD technol-ogy,and the fault diagnosis feature vector is obtained.Secondly,the improved BKA is used to optimize the ELM parameters,and the IBKA-ELM classification model is obtained;IBKA initializes the population by Sine mapping,randomly selects three different individuals for differential mutation operation,updates the leader position,and introduces adaptive inertial weight factor in the leader position update,which can effectively improve the optimization ability and convergence speed of the algorithm.Finally,the proposed method was verified by a 150 W Boost circuit.The experimental results showed that the accuracy of VMD combined with IBKA-ELM in the actual diagnosis reached more than 99%.

陈苗;姜媛媛

安徽理工大学电气与信息工程学院,淮南 232001||安徽理工大学环境友好材料与职业健康研究院,芜湖 241003安徽理工大学电气与信息工程学院,淮南 232001||安徽理工大学环境友好材料与职业健康研究院,芜湖 241003

交通运输

软故障诊断变分模态分解黑翅鸢搜索算法极限学习机DC-DC电路

soft fault diagnosisvariational mode decompositionblack-winged kite search algorithmextreme learning machineDC-DC circuit

《天津科技大学学报》 2024 (6)

57-65,9

安徽省重点研究与开发计划项目(202104g01020012)安徽理工大学环境友好材料与职业健康研究院研发专项基金资助项目(ALW2020YF18)

10.13364/j.issn.1672-6510.20240113

评论