首页|期刊导航|现代电子技术|基于自适应差异化图卷积的图注意力网络表示学习算法

基于自适应差异化图卷积的图注意力网络表示学习算法OA北大核心

Graph attention network representation learning algorithm based on adaptive differentiation graph convolution

中文摘要英文摘要

为解决传统图卷积网络在处理节点间复杂关系时存在的局限性,提出一种基于自适应差异化图卷积的图注意力网络表示学习算法.采用差异化图卷积网络,依据每个节点自身特征和邻居信息进行差异化采样,捕捉节点间的复杂关系;再结合二阶段关键相邻采样方式优先挖掘重要节点并保留随机性,完成关键邻居节点的采样;然后结合图注意力网络,通过局部关注和自适应学习权重分配将关键邻居节点特征聚合到自身节点上,增强节点的特征表示;最后经网络训练,进一步增强网络表示学习能力.实验结果表明,所提出的算法优化了节点聚合程度和边界清晰度,提高了节点分类的准确性和可视化效果,并且通过关注二阶邻居和使用双头注意力,在网络表示学习上也展现出了优越性能.

In order to solve the limitation of traditional graph convolution network in dealing with complex relationships between nodes,a graph attention network representation learning algorithm based on adaptive differentiation graph convolution network is proposed.The differentiation graph convolution network is used to conduct differential sampling according to each node′s own characteristics and neighbor information,so as to capture the complex relationships between nodes.The two-stage key neighbor sampling method is used to mine important nodes first and retain randomness to complete the sampling of key neighbor nodes.In combination with graph attention network,the key neighbor node features are aggregated to their own nodes by means of local attention and adaptive learning weight distribution,so as to enhance the node feature representation.After training the network,the learning ability of network representation is enhanced further.The experimental results show that the proposed algorithm can optimize the degree of node aggregation and boundary clarity,and improve the accuracy and visualization of node classification.The algorithm also shows superior performance in network representation learning by paying attention to second-order neighbors and using double attention.

吴誉兰;舒建文

南昌航空大学科技学院,江西 九江 332020南昌航空大学,江西 南昌 330063

电子信息工程

网络表示学习图卷积网络自适应差异化机制节点采样特征聚合网络训练图注意力网络

network representation learninggraph convolution networkadaptive differentiation mechanismnode samplingfeature aggregationnetwork traininggraph attention network

《现代电子技术》 2025 (002)

51-54 / 4

江西省教育厅科技项目(GJJ2204309)

10.16652/j.issn.1004-373x.2025.02.009

评论