| 注册
首页|期刊导航|中国电机工程学报|基于图表示学习和特征引导的电力系统运行场景生成方法

基于图表示学习和特征引导的电力系统运行场景生成方法

陈志威 吴毓峰 潘振宁 余涛 刘前进 黄文琦 侯佳萱

中国电机工程学报2024,Vol.44Issue(24):9521-9532,中插2,13.
中国电机工程学报2024,Vol.44Issue(24):9521-9532,中插2,13.DOI:10.13334/j.0258-8013.pcsee.231311

基于图表示学习和特征引导的电力系统运行场景生成方法

A Power System Operating Scenario Generation Method Based on Graph Representation Learning and Feature Guidance

陈志威 1吴毓峰 1潘振宁 1余涛 2刘前进 1黄文琦 3侯佳萱3

作者信息

  • 1. 华南理工大学电力学院,广东省 广州市 510641
  • 2. 广东省电网智能量测与先进计量企业重点实验室(华南理工大学),广东省 广州市 510641
  • 3. 南方电网数字电网研究院有限公司,广东省 广州市 510700
  • 折叠

摘要

Abstract

With the massive integration of new energy sources,the randomness of the power system has increased significantly,and the data distribution of the operation scenarios is scattered and uneven,which reduces the applicability of the existing scenario generation methods.Traditional scenario generation based on human experience and models pays more attention to some characteristics of the scenario and ignores the data distribution of the scenario.Data-driven scenario generation methods focus on describing the data distribution of the scenario,while some operation scenarios with low probability and high risk are easily overlooked.To address this issue,this research paper presents a novel approach for scenario generation,combining graph representation learning and feature-guided operation scenario generation based on the graph representation of grid operation scenarios.The proposed method mines grid operation features and incorporates the desired features into the model through data and knowledge fusion,ensuring feature-guided operation scenario generation while maintaining and preserving the distributional characteristics as far as possible.Ultimately,the verification results obtained from a system that incorporates a substantial amount of renewable energy sources and considers the operational risks of the power grid demonstrate that the proposed model outperforms the traditional scenario generation method.The proposed model not only enhances the generation efficiency of specific operational scenarios,but also ensures the consistency and diversity of the generated scenarios.Moreover,this paper provides comprehensive data support for machine-aided decision-making in power system dispatching.

关键词

图表示学习/生成式对抗网络/特征引导/调度场景生成

Key words

graph represents learning/generative adversarial network/feature guidance/scheduling scene generation

分类

信息技术与安全科学

引用本文复制引用

陈志威,吴毓峰,潘振宁,余涛,刘前进,黄文琦,侯佳萱..基于图表示学习和特征引导的电力系统运行场景生成方法[J].中国电机工程学报,2024,44(24):9521-9532,中插2,13.

基金项目

国家自然科学基金项目(U2066212,52207105).Project Supported by National Natural Science Foundation of China(U2066212,52207105). (U2066212,52207105)

中国电机工程学报

OA北大核心CSTPCD

0258-8013

访问量0
|
下载量0
段落导航相关论文