| 注册
首页|期刊导航|北京交通大学学报|基于FasterNet和YOLOv8s改进的铁路异物入侵快速检测方法

基于FasterNet和YOLOv8s改进的铁路异物入侵快速检测方法

姜香菊 冯海照 李涛

北京交通大学学报2024,Vol.48Issue(5):39-48,10.
北京交通大学学报2024,Vol.48Issue(5):39-48,10.DOI:10.11860/j.issn.1673-0291.20230175

基于FasterNet和YOLOv8s改进的铁路异物入侵快速检测方法

Improved rapid detection method for foreign object intrusion on railroads based on FasterNet and YOLOv8s

姜香菊 1冯海照 1李涛2

作者信息

  • 1. 兰州交通大学自动化与电气工程学院,兰州 730070
  • 2. 兰州交通大学机电工程学院,兰州 730070
  • 折叠

摘要

Abstract

Railway track obstructions pose potential threats to train operation safety,with severe inci-dents possibly leading to derailments,overturns,and casualties.To address the challenge of achieving real-time detection on edge devices,where existing railway intrusion detection models often fail,this paper proposes an improved railway obstruction detection algorithm based on FasterNet and YOLOv8s.First,FasterNet,a network with fewer parameters,replaces the CSPDarkNet53 back-bone of YOLOv8s for feature extraction,reducing both the parameters and computational complexity.Second,inspired by partial convolution in FasterNet,a FasterBlock module is introduced to replace the C2f module in YOLOv8s'neck,enabling multi-scale feature fusion and further decreasing model parameters.Finally,to mitigate accuracy loss caused by model lightweighting,a redesigned BiFPN-A feature fusion structure is proposed.In this structure,Fusion operations replace Concat for tensor concatenation,achieving feature map fusion via FasterBlock and Fusion.Additionally,a parameter-free attention mechanism SimAM is integrated before each FasterBlock,ensuring that the lightweight model maintains robust detection accuracy.The results demonstrate that the improved model achieves a 60.89%reduction in size,a 61.8%decrease in parameters,and a 45.1%reduction in computational complexity,with only a 0.2%loss in detection accuracy.

关键词

目标检测/YOLOv8/轻量化/SimAM/铁路异物

Key words

object detection/YOLOv8/lightweight/SimAM/railway foreign objects

分类

信息技术与安全科学

引用本文复制引用

姜香菊,冯海照,李涛..基于FasterNet和YOLOv8s改进的铁路异物入侵快速检测方法[J].北京交通大学学报,2024,48(5):39-48,10.

基金项目

甘肃省科技计划项目(23JRRA868) Gansu Province Science and Technology Program(23JRRA868) (23JRRA868)

北京交通大学学报

OA北大核心CSTPCD

1673-0291

访问量0
|
下载量0
段落导航相关论文