| 注册
首页|期刊导航|重庆理工大学学报|注意力机制和多尺度特征融合的细粒度图像分类

注意力机制和多尺度特征融合的细粒度图像分类

李云红 郭越 谢蓉蓉 张蕾涛 苏雪平 李丽敏 陈锦妮

重庆理工大学学报2024,Vol.38Issue(23):155-164,10.
重庆理工大学学报2024,Vol.38Issue(23):155-164,10.DOI:10.3969/j.issn.1674-8425(z).2024.12.019

注意力机制和多尺度特征融合的细粒度图像分类

Attentional mechanisms and multiscale feature fusion for fine-grained image classification

李云红 1郭越 2谢蓉蓉 1张蕾涛 1苏雪平 1李丽敏 1陈锦妮1

作者信息

  • 1. 西安工程大学 电子信息学院,西安 710048
  • 2. 山西大学 生命科学学院,太原 030031
  • 折叠

摘要

Abstract

Fine-grained image classification is susceptible to background interference,inaccurate localization of key regions and a large number of model parameters.To address these problems,we propose a classification network with attention mechanism and multi-scale feature fusion.First,based on the YOLOv7 network,the lightweight backbone network is rebuilt using the Ghost BottleNeck module,and the Conv in the neck network is replaced with GhostConv to realize the lightweight of the model.Second,a parameter-free SimAM attention mechanism is introduced to infer the 3D attention weights of the feature map by considering the correlation between spatial and channel dimensions,characterizing locally salient features,suppressing useless features,and improving the effectiveness of the target region information.Finally,a feature-selectable pyramid pooling module is built to help the network model better capture and process the multi-scale features of the target and improve the model's perceptual ability.Our results suggest AM-Net on Stanford Dogs dataset reaches 88.9%in accuracy,83.6%in precision,85.7%in recall and 84.6%in F1 score.Moreover,the number of model parameters is 26.53 MB,and the frame rate per second reaches 89.3 frames per second on Stanford Cars dataset with 95.2%in accuracy,93.7%in precision and 94.9%in recall.Our experimental results show AM-Net improves the classification accuracy of fine-grained images and reduces the weight of the network,markedly improving the performance compared with other network models.

关键词

人工智能/细粒度分类/特征提取/注意力机制/多尺度特征融合

Key words

artificial intelligence/fine-grained classification/feature extraction/attention mechanisms/multi-scale feature fusion

分类

信息技术与安全科学

引用本文复制引用

李云红,郭越,谢蓉蓉,张蕾涛,苏雪平,李丽敏,陈锦妮..注意力机制和多尺度特征融合的细粒度图像分类[J].重庆理工大学学报,2024,38(23):155-164,10.

基金项目

国家自然科学基金项目(62203344) (62203344)

陕西省自然科学基础研究重点项目(2022JZ-35) (2022JZ-35)

陕西高校青年创新团队项目 ()

重庆理工大学学报

OA北大核心

1674-8425

访问量0
|
下载量0
段落导航相关论文