| 注册
首页|期刊导航|电讯技术|采用特征增强和深度关系感知策略的3D人脸识别方法

采用特征增强和深度关系感知策略的3D人脸识别方法

张龙 胡金蓉 张艳 黄果 黄飞虎

电讯技术2025,Vol.65Issue(1):25-34,10.
电讯技术2025,Vol.65Issue(1):25-34,10.DOI:10.20079/j.issn.1001-893x.240219001

采用特征增强和深度关系感知策略的3D人脸识别方法

A 3D Face Recognition Method Using Feature Enhancement and Depth Relationship Perception Strategy

张龙 1胡金蓉 1张艳 2黄果 3黄飞虎1

作者信息

  • 1. 成都信息工程大学 计算机学院,成都 610225
  • 2. 国家卫星气象中心,北京 100081
  • 3. 川西南空间效应探测与应用四川省高等学校重点实验室,四川 乐山 614004
  • 折叠

摘要

Abstract

To address the issue that 2D face recognition methods are susceptible to external environmental interference,a deep learning-based 3D face recognition method is proposed.The method extracts features from face geometric information and demonstrates strong robustness to environmental factors such as lighting.According to the analysis of existing research,a dual-domain feature enhancement module is designed.This module extracts local facial features from both the channel domain and the spatial domain,and uses them as enhancements to the global features,resulting in more comprehensive facial features.Additionally,a novel feature learning strategy tailored for 3D face recognition is proposed to address the characteristics of 3D face data.This strategy aims to enable face recognition models to extract identity features from the depth relationships of 3D faces and it can significantly alleviate the negative impact of noise in 3D faces on feature computation.On the public datasets Bosphorus and Texas,verification accuracies of 96.32%and 98.93%are achieved,respectively.The results demonstrate that the proposed method can achieve higher recognition accuracy and also has certain advantages in the face recognition under complex conditions.

关键词

3D人脸识别/深度学习/深度关系感知/双域特征增强

Key words

3D face recognition/deep learning/deep relationship perception/dual domain feature enhancement

分类

信息技术与安全科学

引用本文复制引用

张龙,胡金蓉,张艳,黄果,黄飞虎..采用特征增强和深度关系感知策略的3D人脸识别方法[J].电讯技术,2025,65(1):25-34,10.

基金项目

四川省科技计划项目(2023YFQ0072,2022YFQ0073) (2023YFQ0072,2022YFQ0073)

川西南空间效应探测与应用四川省高等学校重点实验室项目(ZDXM202301002) (ZDXM202301002)

电讯技术

OA北大核心

1001-893X

访问量0
|
下载量0
段落导航相关论文