| 注册
首页|期刊导航|光学精密工程|面向机械臂抓取的航天器位姿检测

面向机械臂抓取的航天器位姿检测

黄成 苏俊飞 许家忠

光学精密工程2024,Vol.32Issue(21):3231-3243,13.
光学精密工程2024,Vol.32Issue(21):3231-3243,13.DOI:10.37188/OPE.20243221.3231

面向机械臂抓取的航天器位姿检测

Spacecraft posture detection for robotic arm grabbing

黄成 1苏俊飞 1许家忠1

作者信息

  • 1. 哈尔滨理工大学 自动化学院,黑龙江 哈尔滨 150080
  • 折叠

摘要

Abstract

An improved YOLOv8n-based target position detection algorithm is proposed to address the in-efficiency of target detection in non-cooperative robotic arm gripping tasks.First,the Large Separable Ker-nel Attention(LSKA)mechanism is integrated into the Spatial Pyramid Pooling Fusion(SPPF)layer to enhance the model's multiscale feature aggregation capability.Second,a novel lightweight module,RGC-SPELAN,is designed to reduce the computational cost and runtime of the model.Additionally,the aver-age pairwise distance intersection over union(MPDIoU)is restructured with an inner transformation con-cept,which is further combined with the weighted intersection over union(Wise-IoU)to develop a new loss function,Wise-MPDIoU^inner.This loss function enhances both the training efficiency and detection performance of the model.Finally,using target position detection and depth information,a real-time coor-dinate system is constructed to determine the target's 3D spatial attitude,enabling the completion of robot-ic arm grasping tasks.Experimental results demonstrate that the proposed algorithm achieves an accuracy of 96.5%,an mAP@0.5 of 96.7%,a 16%reduction in parameters,and a 33%improvement in infer-ence speed.The algorithm effectively balances model accuracy and computational efficiency,meeting the real-time requirements of the UR5 robot for non-cooperative grasping tasks.

关键词

机械臂/抓取检测/轻量化/YOLOv8n/位姿检测/损失函数

Key words

robotic arm/grabbing detection/lightweighting/YOLOv8n/posture detection/loss func-tion

分类

信息技术与安全科学

引用本文复制引用

黄成,苏俊飞,许家忠..面向机械臂抓取的航天器位姿检测[J].光学精密工程,2024,32(21):3231-3243,13.

基金项目

国家自然科学基金资助项目(No.52102455) (No.52102455)

光学精密工程

OA北大核心CSTPCD

1004-924X

访问量0
|
下载量0
段落导航相关论文