| 注册
首页|期刊导航|机械科学与技术|结合振动信号图像化和RepVGG的滚动轴承故障诊断方法

结合振动信号图像化和RepVGG的滚动轴承故障诊断方法

周建民 王云庆 李家辉

机械科学与技术2024,Vol.43Issue(12):2024-2031,8.
机械科学与技术2024,Vol.43Issue(12):2024-2031,8.DOI:10.13433/j.cnki.1003-8728.20230154

结合振动信号图像化和RepVGG的滚动轴承故障诊断方法

Rolling Bearing Fault Diagnosis Method Using Vibration Signal Imaging and RepVGG

周建民 1王云庆 1李家辉1

作者信息

  • 1. 华东交通大学,载运工具与装备教育部重点实验室,南昌 330013||轨道交通基础设施性能监测与保障国家重点实验室,南昌 330013
  • 折叠

摘要

Abstract

For fault diagnosis problems of rolling bearing that the nuances of one-dimensional vibration data feature extraction is not obvious and real-time diagnosis speed is low,using vibration data and image data pretreatment method,the vibration signal can be converted into 2D time-frequency diagrams using the continuous wavelet transform,a kind of based on the re-parametric technology(RepVGG)structure of bearing fault diagnosis method is put forward.The multi-branch network structure of the training model is equivalent to the single-path network structure,so as to improve the accuracy and speed of the inference model.The experimental verification is done on the bearing fault data set.The results show that the RepVGG model can accurately identify bearing fault categories,and the average accuracy rate is better than other methods.Moreover,under the same experimental hardware conditions,the RepVGG model is effective and efficient.The reasoning time is reduced by 81%and 66.19%respectively,which effectively improves the speed and accuracy of fault diagnosis,and has good adaptability and superiority.

关键词

轴承/故障诊断/时频图/RepVGG模型

Key words

bearing/fault diagnosis/time-frequency diagram/RepVGG model

分类

机械制造

引用本文复制引用

周建民,王云庆,李家辉..结合振动信号图像化和RepVGG的滚动轴承故障诊断方法[J].机械科学与技术,2024,43(12):2024-2031,8.

基金项目

国家自然科学基金项目(51865010) (51865010)

机械科学与技术

OA北大核心CSTPCD

1003-8728

访问量0
|
下载量0
段落导航相关论文