| 注册
首页|期刊导航|电力系统保护与控制|计及低复杂度少保守性的并联分数阶逆变器系统稳定性研究

计及低复杂度少保守性的并联分数阶逆变器系统稳定性研究

杨铎烔 林振福 聂智杰 张子昊 曾博儒

电力系统保护与控制2025,Vol.53Issue(1):47-58,12.
电力系统保护与控制2025,Vol.53Issue(1):47-58,12.DOI:10.19783/j.cnki.pspc.240010

计及低复杂度少保守性的并联分数阶逆变器系统稳定性研究

Stability analysis of parallel fractional-order inverter systems considering low complexity and conservatism

杨铎烔 1林振福 1聂智杰 1张子昊 1曾博儒1

作者信息

  • 1. 南方电网数字电网研究院股份有限公司,广东 广州 510700
  • 折叠

摘要

Abstract

The three-level T-type converter(3LT2C)and LCL filter have been widely used in renewable energy power generation systems.Recent studies show that,because of the fractional characteristics of the inductance and capacitance of the LCL filter,the fractional-order model has higher accuracy than the integer-order model in describing the static-and dynamic-behaviors of the physical LCL-3LT2C converter.To evaluate the stability of the grid-connected fractional LCL-3LT2C(FLCL-3LT2C),a fractional impedance model is often used.However,because of the fractional calculus,the overall order of the characteristic equation would increase,thus leading to a high computation burden.The existing eigenvalues estimation method is not sufficiently accurate.To solve these problems,a low-complexity and less-conservative stability criterion based on the Ostrowski theorem is proposed.This determines the critical stability point according to the system loop gain matrix.First,the fractional sequence admittance models for a single and multi-parallel F3LT2C are established with an unbalanced grid.Second,the critical stability points of the system are determined by the Ostrowski theorem.Simulation and experimental results verify the modeling accuracy of the proposed fractional model and the effectiveness of the proposed stability theorem with low-complexity and less-conservativeness.

关键词

稳定裕度/T型并网变流器/分数阶电感和电容/Gershgorin定理/Ostrowski定理

Key words

stability margin/T-type grid-connected converter/fractional inductor and capacitor/Gershgorin theorem/Ostrowski theorem

引用本文复制引用

杨铎烔,林振福,聂智杰,张子昊,曾博儒..计及低复杂度少保守性的并联分数阶逆变器系统稳定性研究[J].电力系统保护与控制,2025,53(1):47-58,12.

基金项目

This work is supported by the Key Area Research and Development Program of Guangdong Province(No.2021B 0101230003). 广东省重点领域研发计划项目资助(2021B 0101230003) (No.2021B 0101230003)

电力系统保护与控制

OA北大核心

1674-3415

访问量0
|
下载量0
段落导航相关论文