| 注册
首页|期刊导航|集成技术|基于领域自适应预训练的黑暗场景下行为识别研究

基于领域自适应预训练的黑暗场景下行为识别研究

许清林 乔宇 王亚立

集成技术2025,Vol.14Issue(1):25-38,14.
集成技术2025,Vol.14Issue(1):25-38,14.DOI:10.12146/j.issn.2095-3135.20231225001

基于领域自适应预训练的黑暗场景下行为识别研究

Domain-Adaptive Pretraining for Action Recognition in the Dark Scenes

许清林 1乔宇 2王亚立3

作者信息

  • 1. 中国科学院深圳先进技术研究院 深圳 518055||中国科学院大学 北京 100049
  • 2. 上海人工智能实验室 上海 200232
  • 3. 中国科学院深圳先进技术研究院 深圳 518055||上海人工智能实验室 上海 200232
  • 折叠

摘要

Abstract

The domain gap between dark scenes and the data used by traditional pretrained models leads to suboptimal performance with the conventional pretrain-finetune approach,and pretraining from scratch is costly.To address this issue,a domain-adaptive pretraining method is proposed to improve action recognition performance in the dark environments.The method integrates an external vision enhancement model for de-darkening to introduce critical knowledge for dark scene processing.It also employs a cross-domain self-distillation framework to reduce the domain gap of visual representations between illuminated and dark scenes.Through extensive experiments in various dark environment action recognition settings,the proposed approach can achieve a Top1 accuracy of 97.19%on the dark dataset of fully supervised action recognition.In the source-free domain adaptation on the Daily-DA dataset,the accuracy can be improved to 49.11%.In the multi-source domain adaptation scenario on the Daily-DA dataset,the Top1 accuracy can reach 54.63%.

关键词

黑暗场景/行为识别/迁移学习/领域自适应

Key words

dark scenes/action recognition/transfer learning/domain adaptation

分类

信息技术与安全科学

引用本文复制引用

许清林,乔宇,王亚立..基于领域自适应预训练的黑暗场景下行为识别研究[J].集成技术,2025,14(1):25-38,14.

基金项目

国家重点研发计划项目(2022ZD0160505) (2022ZD0160505)

国家自然科学基金项目(62272450) This work is supported by National Key Research and Development Program of China(2022ZD0160505),National Natural Science Foundation of China(62272450) (62272450)

集成技术

2095-3135

访问量0
|
下载量0
段落导航相关论文