| 注册
首页|期刊导航|计算机工程与应用|不平衡数据流的集成分类方法综述

不平衡数据流的集成分类方法综述

朱诗能 韩萌 杨书蓉 代震龙 杨文艳 丁剑

计算机工程与应用2025,Vol.61Issue(2):59-72,14.
计算机工程与应用2025,Vol.61Issue(2):59-72,14.DOI:10.3778/j.issn.1002-8331.2407-0160

不平衡数据流的集成分类方法综述

Ensemble Classification Methods for Imbalanced Data Streams

朱诗能 1韩萌 1杨书蓉 1代震龙 1杨文艳 1丁剑1

作者信息

  • 1. 北方民族大学 计算机科学与工程学院,银川 750021
  • 折叠

摘要

Abstract

In real-world scenarios,learning from data streams often faces the challenge of class imbalance,where learning algorithms are unable to effectively recognize minority class samples due to the lack of training data.To introduce the cur-rent research status and challenges of ensemble classification for imbalanced data streams,recent literature in this field is reviewed.The analysis and summary are conducted from the perspectives of decision rules based on weighting,selection,and voting,as well as learning methods based on cost-sensitive learning,active learning,and incremental learning.The performance of algorithms using the same dataset is compared.To address the imbalance issues in different types of com-plex data streams,ensemble classification algorithms are summarized from four aspects:concept drift,multi-class,noise,and class overlap.The time complexity of classical algorithms is analyzed.Finally,the classification challenges of imbal-anced issues in dynamic data streams,data streams with missing information,multi-label data streams,and uncertain data streams are proposed for future research on ensemble strategies.

关键词

不平衡数据流/集成分类/决策规则/学习方式/复杂数据流

Key words

imbalanced data streams/ensemble classification/decision rule/learning methods/complex data streams

分类

信息技术与安全科学

引用本文复制引用

朱诗能,韩萌,杨书蓉,代震龙,杨文艳,丁剑..不平衡数据流的集成分类方法综述[J].计算机工程与应用,2025,61(2):59-72,14.

基金项目

国家自然科学基金(62062004) (62062004)

宁夏自然科学基金(2022AAC03279). (2022AAC03279)

计算机工程与应用

OA北大核心

1002-8331

访问量0
|
下载量0
段落导航相关论文