| 注册
首页|期刊导航|石油钻采工艺|变权重组合算法预测抽油机井动液面提高测试效益

变权重组合算法预测抽油机井动液面提高测试效益

艾信 刘天宇 张浩伟 曹伟 周娟 辛宏

石油钻采工艺2024,Vol.46Issue(5):586-599,14.
石油钻采工艺2024,Vol.46Issue(5):586-599,14.DOI:10.13639/j.odpt.202412009

变权重组合算法预测抽油机井动液面提高测试效益

Variable weight combination prediction model improves the efficiency of dynamic liquid level testing in pumping unit wells

艾信 1刘天宇 1张浩伟 1曹伟 2周娟 3辛宏1

作者信息

  • 1. 中国石油天然气股份有限公司长庆油田分公司油气工艺研究院,陕西西安||低渗透油气田勘探开发国家工程实验室,陕西西安
  • 2. 中国石油天然气股份有限公司长庆油田分公司第七采油厂,陕西西安
  • 3. 中国石油天然气股份有限公司长庆油田分公司第五采油厂,陕西西安
  • 折叠

摘要

Abstract

To address the issues of high labor intensity,low testing frequency,and high testing costs associated with traditional manual testing methods for the dynamic liquid level in pumping unit wells,the article employs the Pearson correlation coefficient analysis method to investigate the correlation between 29 automatically collected characteristic parameters of pumping unit wells and the measured dynamic liquid level,ultimately identifying 13 key characteristic parameters.Utilizing machine learning techniques,including XGBoost,LightGBM,and BP neural network,distinct dynamic liquid level prediction models for pumping unit wells were developed.Through the input of 13 key characteristic parameters into these models,an evaluation of their prediction outcomes was conducted.The evaluation revealed that a singular prediction model was inadequate for all pumping unit wells.Consequently,a variable weight combination model,founded on the three prediction models,was formulated.Numerous field applications in Changqing Oilfield have demonstrated that,in comparison to traditional manual testing methods,this approach achieves an average relative error within 5%,a testing efficiency increase of over 150,000 times,a reduction in labor intensity by over 90%,a testing frequency increase exceeding 2,000 times,and a significant 96%reduction in testing costs.In conclusion,the variable weight combination dynamic liquid level prediction model effectively addresses the challenges posed by high labor intensity,low testing frequency,and high testing costs inherent to traditional manual testing methods,thereby offering novel insights for dynamic liquid level testing in domestic oil fields.

关键词

油井/采油/抽油机井/动液面/预测模型/机器学习/皮尔逊相关系数/神经网络

Key words

Oil well/Oil recovery/Pumping unit well/Dynamic liquid level/Predictive model/Machine learning/Pearson correlation coefficient/Neural network

分类

能源科技

引用本文复制引用

艾信,刘天宇,张浩伟,曹伟,周娟,辛宏..变权重组合算法预测抽油机井动液面提高测试效益[J].石油钻采工艺,2024,46(5):586-599,14.

基金项目

国家科技重大专项"鄂尔多斯盆地大型低渗透岩性地层油气藏开发示范工程"(编号:2016ZX05050). (编号:2016ZX05050)

石油钻采工艺

OA北大核心CSTPCD

1000-7393

访问量0
|
下载量0
段落导航相关论文