| 注册
首页|期刊导航|北京测绘|基于深度学习的地理要素类别语义匹配研究进展

基于深度学习的地理要素类别语义匹配研究进展

蔡荣锋 谭永滨 王宏

北京测绘2025,Vol.39Issue(1):1-7,7.
北京测绘2025,Vol.39Issue(1):1-7,7.DOI:10.19580/j.cnki.1007-3000.2025.01.001

基于深度学习的地理要素类别语义匹配研究进展

Research progress on deep learning-based semantic matching of geographical element categories

蔡荣锋 1谭永滨 2王宏1

作者信息

  • 1. 东华理工大学 测绘与空间信息工程学院,江西 南昌 330013
  • 2. 东华理工大学 测绘与空间信息工程学院,江西 南昌 330013||东华理工大学 自然资源部环鄱阳湖区域矿山环境监测与治理重点实验室,江西 南昌 330013
  • 折叠

摘要

Abstract

Geospatial data resources are becoming increasingly abundant as geographical data collection methods advance.However,semantic heterogeneity in geospatial data under different classification systems prevents effective data fusion in applications,resulting in the problem of"supply and demand dislocation of geospatial data".Semantic matching is the key to solving this problem,but current methods mainly rely on expert knowledge and have limited scalability.This paper discussed the progress of semantic matching of geographical element categories,with a focus on similarity calculation and vectorization representation methods.It also explored the semantic matching feasibility of geographical element categories in the absence of expert knowledge.On this basis,the research opportunities for semantic matching of geographical element categories were proposed.

关键词

非监督学习/语义匹配/地理要素类别/深度神经网络

Key words

unsupervised learning/semantic matching/geographical element category/deep neural network

分类

天文与地球科学

引用本文复制引用

蔡荣锋,谭永滨,王宏..基于深度学习的地理要素类别语义匹配研究进展[J].北京测绘,2025,39(1):1-7,7.

基金项目

国家自然科学基金(42361067) (42361067)

东华理工大学2024年度研究生创新专项资金(DHYC-202411). (DHYC-202411)

北京测绘

1007-3000

访问量0
|
下载量0
段落导航相关论文