| 注册
首页|期刊导航|东南大学学报(自然科学版)|基于视觉与振动数据融合的结构层间位移响应识别

基于视觉与振动数据融合的结构层间位移响应识别

单伽锃 张宏泽 白子轩 周德源

东南大学学报(自然科学版)2025,Vol.55Issue(1):41-50,10.
东南大学学报(自然科学版)2025,Vol.55Issue(1):41-50,10.DOI:10.3969/j.issn.1001-0505.2025.01.005

基于视觉与振动数据融合的结构层间位移响应识别

Interstory drift response identification of structures based on vision and vibration data fusion

单伽锃 1张宏泽 2白子轩 2周德源2

作者信息

  • 1. 同济大学土木工程学院,上海 200092||上海韧性城市与智能防灾工程技术研究中心,上海 200092
  • 2. 同济大学土木工程学院,上海 200092
  • 折叠

摘要

Abstract

With a contact-based displacement recognition technology based on computer vision,structural vi-bration videos can be analyzed to capture interstory displacement responses in structures,addressing the chal-lenges of observing interstory displacements under extreme loading conditions.By integrating the mechanisms of structural interstory drift with multi-feature detection algorithms,a method for recognizing bending-shear coupled deformations is proposed.The theoretical validation demonstrates the method's applicability under various deformation scenarios.This technique employs data from inclinometers and visual recognition results to compute interstory drifts,harmful drifts and harmless drifts,thus providing proportions of different drifts within the total drift.Validation through scaled model shaking table experiments confirms the accuracy and ef-fectiveness of this method.The findings indicate that this approach can be utilized for critical deformation monitoring in buildings during seismic events,enabling an accurate assessment of the actual stress states of dif-ferent stories based on the proportions of their deformation components.This approach significantly enhances the precision of interlayer displacement recognition by multi-data calculation,providing essential evidence for evaluating the stress states within building layers.

关键词

结构健康监测/变形识别/层间位移/计算机视觉

Key words

structural health monitoring/deformation identification/interstory drift/computer vision

分类

建筑与水利

引用本文复制引用

单伽锃,张宏泽,白子轩,周德源..基于视觉与振动数据融合的结构层间位移响应识别[J].东南大学学报(自然科学版),2025,55(1):41-50,10.

基金项目

国家自然科学基金资助项目(52278312) (52278312)

中央高校基本科研业务费专项资金资助项目. ()

东南大学学报(自然科学版)

OA北大核心

1001-0505

访问量0
|
下载量0
段落导航相关论文