| 注册
首页|期刊导航|东南大学学报(自然科学版)|基于高斯过程的高空间分辨率振型识别

基于高斯过程的高空间分辨率振型识别

李宾宾 叶挺 兰春光

东南大学学报(自然科学版)2025,Vol.55Issue(1):51-58,8.
东南大学学报(自然科学版)2025,Vol.55Issue(1):51-58,8.DOI:10.3969/j.issn.1001-0505.2025.01.006

基于高斯过程的高空间分辨率振型识别

Gaussian process-based high-resolution structural mode shape identification

李宾宾 1叶挺 2兰春光3

作者信息

  • 1. 浙江大学伊利诺伊大学厄巴纳香槟校区联合学院,海宁 314400||浙江大学平衡建筑研究中心,杭州 310058
  • 2. 浙江大学伊利诺伊大学厄巴纳香槟校区联合学院,海宁 314400||浙江大学建筑设计研究院有限公司,杭州 310058
  • 3. 北京市建筑工程研究院有限责任公司,北京 100039
  • 折叠

摘要

Abstract

To address the challenge of identifying full-field mode shapes of a structure with limited sensors,a Bayesian identification approach based on the Gaussian process(GP)prior is proposed.Based on the principle of Bayesian inference,it effectively fuses finite element analysis(FEA)and modal identification data.Firstly,considering physical constraints,a GP prior of full-field mode shapes is constructed through probabilis-tic FEA or engineering experience.Subsequently,a posterior distribution of full-field mode shapes is estab-lished by introducing the measured vibration data and integrating the results of Bayesian modal identification on the basis of the GP prior.Finally,the efficiency of the proposed approach is validated by identifying full-field mode shapes of an experimental lab shear model and the benchmark model of Canton Tower.The re-sults demonstrate that the proposed approach can effectively infer high-spatial-resolution mode shapes of the structure with limited sensors,and quantify the associated identification uncertainty,which can be effectively applied to structural health monitoring.

关键词

结构健康监测/高斯过程/振型扩展/不确定性量化/物理约束

Key words

structural health monitoring/Gaussian process/mode shape expansion/uncertainty quantifica-tion/physical constraints

分类

建筑与水利

引用本文复制引用

李宾宾,叶挺,兰春光..基于高斯过程的高空间分辨率振型识别[J].东南大学学报(自然科学版),2025,55(1):51-58,8.

基金项目

国家自然科学基金资助项目(51908494). (51908494)

东南大学学报(自然科学版)

OA北大核心

1001-0505

访问量0
|
下载量0
段落导航相关论文