| 注册
首页|期刊导航|航空科学技术|基于多尺度时序卷积网络的晴空湍流颠簸预测研究

基于多尺度时序卷积网络的晴空湍流颠簸预测研究

张其霖 高振兴 齐凯

航空科学技术2025,Vol.36Issue(1):22-32,11.
航空科学技术2025,Vol.36Issue(1):22-32,11.DOI:10.19452/j.issn1007-5453.2025.01.003

基于多尺度时序卷积网络的晴空湍流颠簸预测研究

Research on Clear Air Turbulence Prediction Based on Multi-Scale Temporal Convolutional Network

张其霖 1高振兴 1齐凯2

作者信息

  • 1. 南京航空航天大学,江苏 南京 211100
  • 2. 山东航空公司,山东 济南 250011
  • 折叠

摘要

Abstract

Atmospheric turbulence can easily induce airplane turbulence,and even leads to serious symptoms and accidents.Accurately predicting atmospheric turbulence and its impact on flight is extremely important for ensuring flight safety.This paper addresses the problems of sparse prediction datasets,low spatiotemporal resolution,and high false alarm rates in current turbulence intensity estimation methods based on flight data.Firstly,a maximum likelihood estimation(EDR)algorithm based on the Kolmogorov model is established,and experiments are designed using the von Kármán turbulence theory model to verify the effectiveness of the EDR algorithm.Secondly,a multi-scale temporal convolutional network(MT-CNN)is constructed to predict the EDR index of flight routes based on flight parameter time series.Experimental analysis shows that the turbulence prediction accuracy based on MT-CNN reaches 92.77%.The method proposed in this article can provide effective prediction of clear sky turbulence intensity in flight routes,helping pilots and controllers make decisions on route turbulence risks and ensuring flight safety.

关键词

晴空湍流/EDR指数/von Kármán模型/卷积神经网络/深度学习

Key words

clear air turbulence/EDR index/von Kármán model/CNN/deep learning

分类

航空航天

引用本文复制引用

张其霖,高振兴,齐凯..基于多尺度时序卷积网络的晴空湍流颠簸预测研究[J].航空科学技术,2025,36(1):22-32,11.

基金项目

航空科学基金(2022Z066052002) Aeronautical Science Foundation of China(2022Z066052002) (2022Z066052002)

航空科学技术

1007-5453

访问量0
|
下载量0
段落导航相关论文