| 注册
首页|期刊导航|计算机工程与科学|基于Patches-CNN的模拟电路故障诊断

基于Patches-CNN的模拟电路故障诊断

吴玉虹 王建

计算机工程与科学2025,Vol.47Issue(1):35-44,10.
计算机工程与科学2025,Vol.47Issue(1):35-44,10.DOI:10.3969/j.issn.1007-130X.2025.01.005

基于Patches-CNN的模拟电路故障诊断

Fault diagnosis of analog circuits based on Patches-CNN

吴玉虹 1王建1

作者信息

  • 1. 昆明理工大学信息工程与自动化学院,云南 昆明 650504
  • 折叠

摘要

Abstract

Deep learning is widely used in fault diagnosis,but currently,deep learning-based fault di-agnosis models for analog circuits are relatively complex and difficult to deploy on edge devices.To ad-dress this issue and further improve fault diagnosis accuracy,a simple and lightweight deep learning model for analog circuit fault diagnosis,named Patches-CNN,is proposed.Firstly,the input image is divided into patches and transformed into word vectors(tokens)through a Patch Embedding operator,serving as the input for a ViT-style homogeneous structure.Feature extraction and information acquisi-tion among tokens are carried out using the lightweight operator GSConv,which can effectively enhance the fault diagnosis accuracy of the model.Secondly,layer normalization is added to prevent gradient ex-plosion and accelerate model convergence.To increase the nonlinearity of the model,the GELU activa-tion function is employed.Finally,the Sallen-Key band-pass filter circuit and the Four-Opamp biquad high-pass filter circuit are used as experimental subjects.Experimental results demonstrate that this model can achieve accurate fault classification and location.

关键词

模拟电路/故障诊断/深度学习/同质结构/层归一化

Key words

analog circuit/fault diagnosis/deep learning/homogeneous structure/layer normalization

分类

信息技术与安全科学

引用本文复制引用

吴玉虹,王建..基于Patches-CNN的模拟电路故障诊断[J].计算机工程与科学,2025,47(1):35-44,10.

基金项目

国家自然科学基金(62162034) (62162034)

计算机工程与科学

OA北大核心

1007-130X

访问量0
|
下载量0
段落导航相关论文