| 注册
首页|期刊导航|计算机与现代化|基于LoRA高效微调通用语言大模型的文本立场检测

基于LoRA高效微调通用语言大模型的文本立场检测

韩霄龙 曾曦 刘锟 尚钰

计算机与现代化Issue(1):1-6,6.
计算机与现代化Issue(1):1-6,6.DOI:10.3969/j.issn.1006-2475.2025.01.001

基于LoRA高效微调通用语言大模型的文本立场检测

Stance Detection with LoRA-based Fine-tuning General Language Model

韩霄龙 1曾曦 1刘锟 1尚钰1

作者信息

  • 1. 中国电子科技集团公司第三十研究所,四川 成都 610000
  • 折叠

摘要

Abstract

Stance detection is a key task in natural language processing,which determines the stance of an author based on text analysis.Text stance detection methods transition from early machine learning methods to BERT models,and then evolve to the latest large language models such as ChatGPT.Distinguishing from the closed-source feature of ChatGPT,this paper proposes a text stance detection model,ChatGLM3-LoRA-Stance,by using the domestic open-source ChatGLM3 model.In order to apply large models in professional vertical fields,this paper uses LoRA efficient fine-tuning method.Compared with P-Tuning V2 effi-cient fine-tuning method,LoRA is more suitable for zero-shot and few-shot text stance detection tasks in text.The paper uses the publicly available VAST dataset to fine-tune the ChatGLM3 model,evaluating the performance of existing models in zero-shot and few-shot scenarios.Experimental results indicate that ChatGLM3-LoRA-Stance model has significantly higher F1 scores than other models on zero-shot and few-shot detection tasks.Therefore,the results verify the potential of large language models on text stance detection tasks,and suggest that that the use of LoRA efficient fine-tuning technology can significantly im-prove the performance of ChatGLM3 large language model in text stance detection tasks.

关键词

LoRA微调/通用语言大模型GLM/立场检测/零样本和少样本检测

Key words

LoRA-based fine-tuning/general language large model GLM/stance detection/zero-shot and few-shot detection

分类

信息技术与安全科学

引用本文复制引用

韩霄龙,曾曦,刘锟,尚钰..基于LoRA高效微调通用语言大模型的文本立场检测[J].计算机与现代化,2025,(1):1-6,6.

基金项目

国家自然科学基金资助项目(U22B2036) (U22B2036)

计算机与现代化

1006-2475

访问量0
|
下载量0
段落导航相关论文