| 注册
首页|期刊导航|计算机与现代化|位置自适应卷积PointNet++的点云数据分类方法

位置自适应卷积PointNet++的点云数据分类方法

闫晓奇 彭逸清 任小玲

计算机与现代化Issue(1):44-49,6.
计算机与现代化Issue(1):44-49,6.DOI:10.3969/j.issn.1006-2475.2025.01.008

位置自适应卷积PointNet++的点云数据分类方法

Point Cloud Data Classification Method of PointNet++with Position Adaptive Convolution

闫晓奇 1彭逸清 1任小玲1

作者信息

  • 1. 西安工程大学计算机科学学院,陕西 西安 710660
  • 折叠

摘要

Abstract

Aiming at the problem of low classification accuracy of point cloud data in complex scenes,a PointNet++deep neural network model based on position adaptive convolution is proposed.Since adaptive position convolution has strong ability to cap-ture fine-grained local features and can fully obtain the spatial variation and geometric structure feature information of three-dimensional point clouds,on the basis of PointNet++network,the proposed method in this paper first obtains the key points through the farthest point sampling,and then uses the K nearest neighbor method to realize grouping according to the key points,and then using the adaptive position convolution replaces the MLP in the original method to extract the local features of each group,and finally completes the point cloud classification.The proposed method was compared on two public point cloud datas-ets S3DIS and Semantic3D.Experimental results show that the overall accuracy and mIoU of the proposed method on the indoor dataset S3DIS are about 2.7 percentage points and 3.2 percentage points higher than PointNet++network,respectively,and the overall accuracy and mIoU of the outdoor dataset Semantic3D are about 2.5 percentage points and 2.1 percentage points higher than PointNet++.

关键词

点云分类/位置自适应卷积/PointNet++/深度学习/局部特征

Key words

point cloud classification/position adaptive convolution/PointNet++/deep learning/local feature

分类

信息技术与安全科学

引用本文复制引用

闫晓奇,彭逸清,任小玲..位置自适应卷积PointNet++的点云数据分类方法[J].计算机与现代化,2025,(1):44-49,6.

基金项目

陕西省自然科学基础研究计划重点项目(2018JZ6002) (2018JZ6002)

计算机与现代化

1006-2475

访问量0
|
下载量0
段落导航相关论文