| 注册
首页|期刊导航|水力发电学报|沥青混凝土心墙砂砾石坝的地震响应预测模型与应用

沥青混凝土心墙砂砾石坝的地震响应预测模型与应用

杜敏 张社荣 王超 路彤

水力发电学报2025,Vol.44Issue(1):41-53,13.
水力发电学报2025,Vol.44Issue(1):41-53,13.DOI:10.11660/slfdxb.20250104

沥青混凝土心墙砂砾石坝的地震响应预测模型与应用

Seismic response prediction model of asphalt concrete core sand-gravel dams and its application

杜敏 1张社荣 2王超 2路彤2

作者信息

  • 1. 昆明理工大学 建筑工程学院,昆明 650500||天津大学 水利工程智能建设与运维全国重点实验室,天津 300350||天津大学 建筑工程学院,天津 300350
  • 2. 天津大学 水利工程智能建设与运维全国重点实验室,天津 300350||天津大学 建筑工程学院,天津 300350
  • 折叠

摘要

Abstract

Although deep learning has been widely used to predict the nonlinear seismic response of structures,how to construct its network framework and how to select its hyperparameters are still controversial issues,because either of them may lead to problems such as low computational efficiency and low-accuracy predictions.The seismic response of asphalt concrete core sand-gravel(ACCSG)dams is usually depicted by a data series,which can actually be mined and predicted by a time series prediction model.This paper presents a long short-term memory(LSTM)neural network model that is based on the genetic algorithm(GA)and the particle swarm optimization(PSO)algorithm.This GAPSO-LSTM model overcomes the drawback of low prediction accuracy caused by difficulty in determining the hyperparameters of the traditional network structure,and achieves the accurate prediction goal of the nonlinear dynamic response of an ACCSG dam.Its prediction accuracy is compared with the convolutional neural network(CNN)model,LSTM single neural network model,and PSO-LSTM neural network model without GA optimization.The results show that compared with the other network models,the GAPSO-LSTM network model has higher prediction accuracy for the seismic response of an ACCSG dam.It overcomes the blindness of subjective selection of hyperparameters,and relieves the local convergence problem of the PSO algorithm,thus providing a new idea for seismic performance evaluation of ACCSG dams.

关键词

沥青混凝土心墙砂砾石坝/地震响应预测/长短时记忆网络/遗传算法/粒子群算法/时间序列

Key words

asphalt concrete core sand-gravel dam/seismic response prediction/long short-term memory/genetic algorithm/particle swarm optimization algorithm/time series

分类

建筑与水利

引用本文复制引用

杜敏,张社荣,王超,路彤..沥青混凝土心墙砂砾石坝的地震响应预测模型与应用[J].水力发电学报,2025,44(1):41-53,13.

基金项目

国家自然科学基金项目(51979188) (51979188)

云南省重大科技专项计划项目(202102AF080001) (202102AF080001)

水力发电学报

OA北大核心

1003-1243

访问量0
|
下载量0
段落导航相关论文