| 注册
首页|期刊导航|通信学报|抗拜占庭攻击的梯度净化联邦自适应学习算法

抗拜占庭攻击的梯度净化联邦自适应学习算法

杨辉 邱子游 李中美 朱建勇

通信学报2024,Vol.45Issue(z1):1-11,11.
通信学报2024,Vol.45Issue(z1):1-11,11.DOI:10.11959/j.issn.1000-436x.2024209

抗拜占庭攻击的梯度净化联邦自适应学习算法

Gradient purification federated adaptive learning algorithm for Byzantine attack resistance

杨辉 1邱子游 1李中美 2朱建勇1

作者信息

  • 1. 华东交通大学电气与自动化工程学院,江西 南昌 330013
  • 2. 华东理工大学信息科学与工程学院,上海 200237
  • 折叠

摘要

Abstract

In the context of industrial big data,data security and privacy are key challenges.Traditional data-sharing and model-training methods struggle against risks like Byzantine and poisoning attacks,as federated learning typically as-sumes all participants are trustworthy,leading to performance drops under attacks.To address this,a Byzantine-resilient gradient purification federated adaptive learning algorithm was proposed.The malicious gradients were identified through a sliding window gradient filter and a sign-based clustering filter.The sliding window method detected anomalous gradi-ents,while the sign-based clustering filter selected adversarial gradients based on the consistency of gradient directions.After filtering,a weight-based adaptive aggregation rule was applied to perform weighted aggregation on the remaining trustworthy gradients,dynamically adjusting the weights of participant gradients to reduce the impact of malicious gradi-ents,thereby enhancing the model's robustness.Experimental results show that despite the increased intensity of new poi-soning attacks,the proposed algorithm effectively defends against these attacks while minimizing the loss in model perfor-mance.Compared to traditional defense algorithms,it not only improves model accuracy but also enhances its security.

关键词

联邦学习/拜占庭攻击/投毒攻击/模型鲁棒性/工业大数据

Key words

federated learning/Byzantine attack/poisoning attack/model robustness/industrial big data

分类

信息技术与安全科学

引用本文复制引用

杨辉,邱子游,李中美,朱建勇..抗拜占庭攻击的梯度净化联邦自适应学习算法[J].通信学报,2024,45(z1):1-11,11.

基金项目

国家自然科学基金资助项目(No.62363010,No.61733005) (No.62363010,No.61733005)

工业控制技术国家重点实验室开放课题基金资助项目(No.ICT2024B50)The National Natural Science Foundation of China(No.62363010,No.61733005),The Open Research Project of the State Key Laboratory of Industrial Control Technology of China(No.ICT2024B50) (No.ICT2024B50)

通信学报

OA北大核心CSTPCD

1000-436X

访问量0
|
下载量0
段落导航相关论文