| 注册
首页|期刊导航|现代电子技术|基于时序数据的列车牵引系统故障预测方法

基于时序数据的列车牵引系统故障预测方法

贺鑫来 孙庚 汪敏捷 翟逸男 陈岩霖 尹娴 冯艳红

现代电子技术2025,Vol.48Issue(4):57-62,6.
现代电子技术2025,Vol.48Issue(4):57-62,6.DOI:10.16652/j.issn.1004-373x.2025.04.010

基于时序数据的列车牵引系统故障预测方法

Method of train traction system fault prediction based on timeseries data

贺鑫来 1孙庚 1汪敏捷 1翟逸男 1陈岩霖 1尹娴 1冯艳红1

作者信息

  • 1. 大连海洋大学 信息工程学院,辽宁 大连 116023
  • 折叠

摘要

Abstract

As a key module for the conversion of train kinetic energy,traction system will bring great safety risks to the normal operation of the vehicle if it fails,so it is of great significance to predict its failure.However,traditional prediction methods have problems such as high dependence on manual experience judgment,inability to include a large number of fault features,and insufficient prediction accuracy.On this basis,a method of fault prediction based on timeseries data is proposed.The XGBoost algorithm is used to calculate and screen the fault features of the train traction converter system to determine the key features that are strongly correlated with the converter faults.The LSTM model optimized by Bayes is used to adaptively learn the multi-source variable data features,and the time window is used to intercept the feature variable data to realize the prediction of different types of faults.The experimental results show that The accuracy of the proposed method can reach more than 91%when predicting 6 kinds of faults in converter scenario.

关键词

牵引系统/故障预测/时序数据/XGBoost算法/LSTM/时间窗

Key words

traction system/fault prediction/timeseries data/XGBoost algorithm/LSTM/time window

分类

信息技术与安全科学

引用本文复制引用

贺鑫来,孙庚,汪敏捷,翟逸男,陈岩霖,尹娴,冯艳红..基于时序数据的列车牵引系统故障预测方法[J].现代电子技术,2025,48(4):57-62,6.

基金项目

大连海洋大学科研项目:轨道列车智能运维管理平台(2023001) (2023001)

现代电子技术

OA北大核心

1004-373X

访问量0
|
下载量0
段落导航相关论文