| 注册
首页|期刊导航|信息安全研究|基于深度学习的时空特征融合网络入侵检测模型研究

基于深度学习的时空特征融合网络入侵检测模型研究

李聪聪 袁子龙 滕桂法

信息安全研究2025,Vol.11Issue(2):122-129,8.
信息安全研究2025,Vol.11Issue(2):122-129,8.DOI:10.12379/j.issn.2096-1057.2025.02.04

基于深度学习的时空特征融合网络入侵检测模型研究

Research on Deep Learning-based Spatio-temporal Feature Fusion Network Intrusion Detection Model

李聪聪 1袁子龙 2滕桂法1

作者信息

  • 1. 河北农业大学信息科学与技术学院 河北保定 071001||河北省农业大数据重点实验室(河北农业大学) 河北保定 071001
  • 2. 河北农业大学信息科学与技术学院 河北保定 071001
  • 折叠

摘要

Abstract

As the number of network attacks increases,network intrusion detection systems are becoming increasingly important in maintaining network security.Most studies have used deep learning approaches for network intrusion detection but have not fully utilized the features of traffic from multiple perspectives.Additionally,these studies often suffer from the use of outdated experimental datasets.In this paper,a parallel-structured DSC-Inception-BiLSTM network is proposed to evaluate the designed network model using state-of-the-art datasets.The model consists of two branches,network traffic image,and text anomaly traffic detection.Spatial and temporal features of traffic are extracted by improved convolutional neural networks and recurrent neural networks,respectively.Finally,network intrusion detection is achieved by fusing spatio-temporal features.The experimental results show that our model achieves 99.96%,99.19%,and 99.95%accuracy on the three datasets of CIC-IDS 2017,CSE-CIC-IDS 2018 and CIC-DDoS 2019,respectively,effectively classifying the anomalous traffic with high precision and meeting the requirements of intrusion detection system.

关键词

网络入侵检测/深度学习/特征融合/深度可分离卷积/Inception

Key words

network intrusion detection/deep learning/feature fusion/depthwise separable convolution/Inception

分类

信息技术与安全科学

引用本文复制引用

李聪聪,袁子龙,滕桂法..基于深度学习的时空特征融合网络入侵检测模型研究[J].信息安全研究,2025,11(2):122-129,8.

基金项目

国家自然科学基金项目(U20A20180) (U20A20180)

信息安全研究

OA北大核心

2096-1057

访问量1
|
下载量0
段落导航相关论文