| 注册
首页|期刊导航|草业学报|基于机器学习的高精度耕地识别模型构建

基于机器学习的高精度耕地识别模型构建

麦晶晶 冯琦胜 王瑞泾 封森耀 金哲人 张忠雪 梁天刚 金加明

草业学报2025,Vol.34Issue(2):149-162,14.
草业学报2025,Vol.34Issue(2):149-162,14.DOI:10.11686/cyxb2024110

基于机器学习的高精度耕地识别模型构建

Construction of a high-precision cultivated land identification model based on machine learning-using Zhangye City,Gansu Province as an example

麦晶晶 1冯琦胜 1王瑞泾 2封森耀 3金哲人 4张忠雪 1梁天刚 1金加明5

作者信息

  • 1. 兰州大学草种创新与草地农业生态系统全国重点实验室,兰州大学草地农业科技学院,兰州大学寒旱区生态环境遥感研究中心,甘肃 兰州 730020
  • 2. 北京师范大学地表过程与资源生态国家重点实验室,北京师范大学地理科学学部,北京 100875
  • 3. 清华大学深圳国际研究生院,环境与生态研究院,广东 深圳 518055
  • 4. 苏州市吴江区七都镇农业服务中心,江苏 苏州 215200
  • 5. 甘肃省草原技术推广总站,甘肃 兰州 730070
  • 折叠

摘要

Abstract

Cultivated land is a vital foundation resource for agricultural production and ensuring food security.Accurate identification of cultivated land is of great significance for the conservation of cultivable land resources and the sustainable development of agricultural production.In order to construct a high-precision cultivated land identification model,this study used Sentinel-1/2 data together with the spatial cloud computing platform and built combinations of different feature types.Through feature importance analysis,cultivated land identification features were then evaluated to identify the optimal feature set.Random Forest(RF),support vector machine(SVM),and classification and regression tree(CART)models were employed to identify the cultivated land in Zhangye City,Gansu Province for the year 2021.Simultaneously,the classification accuracy of each classifier was compared and analyzed.The results show that using a combination of vegetation index features,radar features,and topographic features improved the classification accuracy to 91.32%;Features that performed well in cultivated land identification in the study area included elevation,radar polarization channel VH,and normalized difference water index(NDWI).In the cultivated land identification of Zhangye City,RF algorithm demonstrates clear advantages,with an overall accuracy of 90.04%and a Kappa coefficient of 0.79.Based on the RF model,the cultivated land area associated with Zhangye City is estimated to be 585000 ha,accounting for 15.4%of the total area.The methodology developed in this study achieves accurate identification of cultivated land in Zhangye City and offers a tool for cultivated land mapping in the region.

关键词

耕地识别/机器学习/随机森林/哨兵卫星

Key words

identification of cultivated land/machine learning/random forest/Sentinel

引用本文复制引用

麦晶晶,冯琦胜,王瑞泾,封森耀,金哲人,张忠雪,梁天刚,金加明..基于机器学习的高精度耕地识别模型构建[J].草业学报,2025,34(2):149-162,14.

基金项目

财政部和农业农村部:国家现代农业产业技术体系(CARS-34),甘肃省林业和草原局科技创新项目(kjcx2022010),2023年提前批中央财政林业改革发展资金草原科技支撑项目(甘林草发[2023]211号)和近自然恢复技术在退化草地修复中的应用与示范项目资助. (CARS-34)

草业学报

OA北大核心

1004-5759

访问量0
|
下载量0
段落导航相关论文