首页|期刊导航|重庆大学学报|基于卷积神经网络的高层建筑智能控制算法研究

基于卷积神经网络的高层建筑智能控制算法研究OA北大核心

Research on intelligent structural control algorithm for high-rise buildings based on one-dimensional convolution neural network

中文摘要英文摘要

浅层学习神经网络对高维数据进行预测时,会出现预测精度低,泛化能力差等问题.为此,在一维卷积神经网络(one-dimensional convolutional neural networks,1D-CNN)和Deep Dream视觉算法的基础上,提出一种基于CNN深度学习网络的高层建筑智能控制算法,并完成高精度网络模型训练和1D-CNN数据特征可视化;以20层benchmark模型为对象,研究了不同工况下1D-CNN深度学习智能控制算法的减震效果,并与BP(back propagation,BP)和RBF(radial basis function,RBF)等浅层学习进行对比.结果表明,1D-CNN凭借一维卷积和池化特性,可自动提取数据深层次特征并对海量数据进行降维处理;在外界激励作用下,1D-CNN控制器加速度和位移最高减震率分别为69.0%和55.6%,控制性能远高于BP和RBF;改变激励作用后,3种控制器控制性能均有所降低,但1D-CNN性能降幅最小且减震率最高,说明1D-CNN具备更好的泛化性能.

Traditional shallow neural networks exhibit low prediction accuracy and poor generalization when handling high-dimensional data.To solve these problems,this study proposes an intelligent control algorithm for high-rise buildings based on one-dimensional convolutional neural networks(1D-CNN)and the deep dream visualization algorithm.The proposed method enables high-precision network model training and visualizes data features through 1D-CNN.Using a 20-story benchmark model as a case study,the damping performance of the 1D-CNN-based intelligent control algorithm was analyzed under different conditions and compared with back propagation(BP)and radial basis function(RBF)algorithms.Results show that 1D-CNN can effectively extract deep data features and reduce the dimensionality of massive datasets by virtue of one-dimensional convolution and pooling operations.Under external excitation,the maximum damping rates for acceleration and displacement achieved by the 1D CNN controller were 69.0%and 55.6%respectively,significantly outperforming BP and RBF.Although the control performance of all algorithms decreased under modified excitation conditions,the 1D-CNN consistently exhibited superior performance and the best generalization capability.

刘康生;涂建维;张家瑞;李召

武汉理工大学 道路桥梁与结构工程湖北省重点实验室,武汉 430070武汉理工大学 道路桥梁与结构工程湖北省重点实验室,武汉 430070武汉理工大学 道路桥梁与结构工程湖北省重点实验室,武汉 430070武汉理工大学 道路桥梁与结构工程湖北省重点实验室,武汉 430070

深度学习一维卷积神经网络智能控制数据特征可视化泛化性能

deep learning1D-CNNintelligent controldata feature visualizationgeneralization performance

《重庆大学学报》 2025 (1)

66-75,10

国家自然科学基金资助项目(51978550)国家重点研发计划资助项目(2018YFC0705601)中央高校基本科研业务费专项资金资助项目(2019-YB-024).Supported by National Natural Science Foundation of China(51978550),Key Research Plan of Ministry of Science and Technology(2018YFC0705601),Fundamental Research Funds for the Central Universities(2019-YB-024).

10.11835/j.issn.1000-582X.2024.051

评论