首页|期刊导航|电子学报|面向用户随机特性的联合无人机部署与资源分配算法

面向用户随机特性的联合无人机部署与资源分配算法OA北大核心CSTPCD

Random User Characteristics-Oriented Joint UAV Deployment and Resource Allocation Algorithm

中文摘要英文摘要

无人机(Unmanned Aerial Vehicle,UAV)具有低成本、高灵活性和易操作等优点,可作为空中基站(Base Station,BS)或中继为地面用户(Ground User,GU)提供无线传输服务.针对BS与GU之间无法直接通信的场景,可通过部署UAV作为空中中继实现BS与GU之间的信息交互.本文针对GU位置不确定的UAV辅助通信系统,研究UAV的部署和资源分配策略.首先将联合UAV部署、GU关联及功率分配问题建模为满足约束条件的系统平均能耗最小化问题.为求解所建模优化问题,首先提出一种基于圆堆算法的UAV初始部署策略,进而将原优化问题转换为三个子问题,并采用交替迭代法求解.具体而言,基于给定的UAV部署和GU关联策略,提出一种基于拉格朗日对偶方法的功率分配策略.给定UAV部署和功率分配策略,基于Voronoi图迭代确定GU关联策略.给定局部最优功率分配和GU关联策略,提出基于二次变换及一阶泰勒展开的UAV部署方案.对各子问题进行迭代求解,以得到联合优化策略.仿真结果验证了所提算法的有效性.

Unmanned aerial vehicle(UAV)can be deployed as aerial base station(BS)or relays to provide wireless transmission services for ground user(GU)leveraging their advantages of low cost,high flexibility,and maneuverability.In scenarios where direct transmission between the BSs and the GUs may be unavailable,UAVs can be deployed as aerial re-lays which forward data packets for the GUs.In this paper,we address the UAV deployment and resource allocation strate-gies in a UAV-assisted communication system with the knowledge of statistical GU positions.We first formulate the joint UAV deployment,GU association and power allocation problem as a constrained average energy consumption minimiza-tion problem.To solve the formulated problem,we first propose a circle packing-based initial UAV deployment algorithm,then transform the original optimization problem into three subproblems,which are solved by applying an alternating itera-tive algorithm.Specifically,based on the given UAV deployment and GU association strategy,we propose a power alloca-tion strategy by applying the Lagrange dual method.Additionally,given UAV deployment and power allocation strategy,the GU association strategy is designed iteratively based on Voronoi diagram.Furthermore,based on locally optimal power allocation and GU association strategy,we design the UAV deployment strategy by using quadratic transformation and the first-order Taylor expansion.The subproblems are solved iteratively until the algorithm reaches convergence,and the joint optimization strategy can be obtained.Simulation results demonstrate the effectiveness of the proposed algorithms.

王钦源;柴蓉;孙瑞锦;陈前斌

重庆邮电大学通信与信息工程学院,重庆 400065||重庆市移动通信技术重点实验室,重庆 400065重庆邮电大学通信与信息工程学院,重庆 400065||重庆市移动通信技术重点实验室,重庆 400065西安电子科技大学综合业务网理论及关键技术国家重点实验室,陕西 西安 710126重庆邮电大学通信与信息工程学院,重庆 400065||重庆市移动通信技术重点实验室,重庆 400065

电子信息工程

用户随机特性UAV部署GU关联资源分配系统平均能耗

random user characteristicsUAV deploymentGU associationresource allocationaverage system en-ergy consumption

《电子学报》 2024 (12)

4015-4022,8

国家自然科学基金(No.62271097) National Natural Science Foundation of China(No.62271097)

10.12263/DZXB.20240091

评论