首页|期刊导航|电气传动|带有参数在线辨识的永磁同步电机模型预测控制研究

带有参数在线辨识的永磁同步电机模型预测控制研究OA

Model Predictive Control Study of Permanent Magnet Synchronous Motor with Parameters Online Identification

中文摘要英文摘要

永磁同步电机(PMSM)具有动态响应快、功率密度高、低速大转矩等优点,但是温度变化和复杂工况会造成PMSM参数的变化,进而影响电机性能并且降低效率.针对模型预测电流控制中电机参数变化导致的控制器参数失配问题,首先采用自适应线性(Adaline)神经网络进行PMSM的交直轴电感、磁链和电阻等参数在线辨识,然后引入归一化最小均方误差(NLMS)算法对Adaline神经网络算法进行改进,以提高算法的收敛速度和计算精度.此外,利用模型预测控制中的高频电流成分对PMSM转子位置进行计算,获得转子位置角和转速两个参数,以达到无位置传感器控制的目的.实验结果表明,改进后的NLMS-Adaline神经网络相比递推RLS和传统Adaline在线辨识的速度和精确度上都有所提升,对参数失配有良好的适应性.

Permanent magnet synchronous motor(PMSM)has the advantages of fast dynamic response,high power density,and high torque at low speed,but the temperature variation and complex working conditions will cause the variation of PMSM parameters,thus affect motor performance and reduce the output efficiency.To address the controller parameter mismatch problem caused by the change of motor parameters in the model predictive current control,firstly an adaptive linear(Adaline)neural network was used for the online identification of the parameters of the PMSM such as inductance,flux and resistance,and then the normalized least mean square(NLMS)algorithm was introduced to improve the Adaline neural network algorithm in order to improve the convergence speed and computational accuracy of the algorithm.In addition,the high-frequency current component of the model predictive control was utilized to calculate the PMSM rotor position and the parameters of rotor angle and speed were adopt to achieve sensorless control.The experimental results show that the improved NLMS-Adaline neural network is of practical value in terms of speed and accuracy compared with recursive RLS and traditional Adaline online identification,along with a nice adaptation to parameters mismatching.

徐海;米彦青;王艳阳;徐志鹏

中国民用航空沈阳航空器适航审定中心,辽宁 沈阳 110043天津内燃机研究所(天津摩托车技术中心),天津 300072中国民用航空局空中交通管理局航空气象中心,北京 100018中国民航大学电子信息与自动化学院,天津 300300

动力与电气工程

永磁同步电机参数在线辨识自适应线性神经网络归一化模型预测电流控制

permanent magnet synchronous motor(PMSM)parameter online identificationadaptive linear(Adaline)neural networknormalizationmodel predictive current control(MPCC)

《电气传动》 2025 (2)

3-12,10

民航安全能力建设基金(AADSA2021017)

10.19457/j.1001-2095.dqcd25326

评论