船舶光伏面板最佳倾斜角度BP预测算法研究OA
Research on BP Prediction Algorithm for Optimal Tilt Angle of Ship Photovoltaic Panel
受海浪波动的影响,船舶光伏发电系统输出功率处于波动状态,显著影响电能质量和供电可靠性,而陆地光伏发电系统追日跟踪算法无法适应船舶的运行工况.提出一种适合海洋船舶工况下的光伏面板最佳倾斜角度预测方法,该方法综合考虑海浪波动和太阳位置变化对船舶光伏发电系统输出功率的影响,通过分析船舶摇摆周期内,相同太阳高度角、不同太阳辐射能和温度条件下输出功率的波动特征,利用BP神经网络预测光伏面板最佳倾斜角度,调整光伏面板,改善输出功率波动,提高输出功率.结果表明,所提预测方法的平均绝对百分比误差(MAPE)在0.6%以下,均方根误差(RMSE)在0.1以下,验证了所提预测方法的可靠性.
Owing to the influence of wave fluctuation,the output power of ship photovoltaic(PV)power generation system is in the state of fluctuation,which significantly affects the quality of electricity and the reliability of power supply,and the sun-tracking algorithm of the land-based PV system fails to adapt to the operating conditions of ships.An optimal tilt angle predictive method of PV panels under the working conditions of marine vessels was proposed,which took into account the influence of wave fluctuation and sun position change on the output power of ship PV power generation system,analyzed the fluctuation characteristics of the output power curves under the same solar altitude angle,different solar radiation energy and temperature conditions during the rocking cycle of the ship,and predicted the optimal working angle of photovoltaic panels by using BP neural network to adjust the PV panel to improve the output power fluctuation and increase the output power.It is illustrated that the mean absolute percentage error(MAPE)of the proposed method is less than 0.6%and the root mean square error(RMSE)is less than 0.1,the reliability of the proposed method was verified.
柏岩松;李国荣;曹大友;周岩
南京邮电大学自动化学院、人工智能学院,江苏 南京 210023招商局金陵船舶(南京)有限公司,江苏 南京 210000招商局金陵船舶(南京)有限公司,江苏 南京 210000南京邮电大学自动化学院、人工智能学院,江苏 南京 210023
动力与电气工程
船舶摇摆BP神经网络最佳倾斜角度标幺化输出功率抑制
ship rockingBP neural networkoptimal tilt anglestandardizationoutput power suppression
《电气传动》 2025 (2)
41-47,7
评论