基于SCSSA-RF算法的室内可见光定位算法OA北大核心
Indoor visible light positioning algorithm based on SCSSA-RF algorithm
针对随机森林(RF)算法用于室内可见光定位时定位精度低,存在过拟合风险的问题,提出了一种基于正弦人口映射(SPM)与柯西分布的麻雀搜索算法(SSA)优化RF算法的室内可见光定位算法(简称SCSSA-RF算法).首先,该算法使用采集到的接收信号强度值与位置坐标建立指纹数据库.然后,使用SCSSA的全局搜索能力对RF算法的关键参数进行优化,将数据输入最佳模型中进行训练.最后,将决策树的预测结果取平均值,得到待定位点的预测值.实验结果表明:SCSSA-RF算法比未改进的SSA-RF算法收敛速度更快;SCSSA-RF算法的平均定位误差为0.08 m,且误差主要集中在0.05~0.1 m内;在定位误差为0.2 m时,SCSSA-RF算法的预测准确率达到了 93%.
To address the issues of low positioning accuracy and the risk of overfitting when the random forest(RF)algorithm is used for indoor visible light positioning,a sparrow search algorithm(SS A)optimized RF algorithm for indoor visible light position-ing based on sine population mapping(SPM)and Cauchy distribution(hereinafter referred to as SCSSA-RF algorithm)is proposed.Firstly,this algorithm establishes a fingerprint database using the received signal strength values and position coordinates.Then,it uses the global search capability of SCSSA to optimize key parameters of the RF algorithm,inputs the data into the optimal model for training,and averages the prediction results from the decision trees to obtain the predicted value for the target location point.The experimental results show that SCSSA-RF algorithm converges faster than the unimproved SSA-RF algorithm,the average posi-tioning error of SCSSA-RF algorithm is 0.08 meters,with errors mainly concentrated between 0.05 to 0.1 meters.At a positioning error of 0.2 meters,the prediction accuracy of SCSSA-RF algorithm reaches 93%.
陈耀;张烈平;高小淋;张翠
桂林理工大学广西高校先进制造与自动化技术重点实验室,广西桂林 541006桂林航天工业学院广西特种工程装备与控制重点实验室,广西桂林 541004桂林航天工业学院广西特种工程装备与控制重点实验室,广西桂林 541004南宁理工学院信息工程学院,广西桂林 541006
电子信息工程
可见光定位正弦人口映射柯西分布麻雀搜索算法随机森林
visible light positioningsine population mappingCauchy distributionsparrow search algorithmrandom forest
《光通信技术》 2025 (1)
1-5,5
国家自然科学基金项目(61741303)资助广西空间信息与测绘重点实验室基金项目(21-238-21-16)资助梧州市2022年中央引导地方科技发展资金项目(202201001)资助.
评论