| 注册
首页|期刊导航|高压电器|基于KPCA-SVM的变压器多源信息融合故障诊断研究

基于KPCA-SVM的变压器多源信息融合故障诊断研究

杨旭 周文 程林 罗传仙 张静 江翼

高压电器2025,Vol.61Issue(2):54-62,9.
高压电器2025,Vol.61Issue(2):54-62,9.DOI:10.13296/j.1001-1609.hva.2025.02.007

基于KPCA-SVM的变压器多源信息融合故障诊断研究

Research on Multi-source Information Fusion Fault Diagnosis of Transformer Based on KPCA-SVM

杨旭 1周文 1程林 2罗传仙 1张静 1江翼1

作者信息

  • 1. 南瑞集团(国网电力科学研究院)有限公司,南京 211006||国网电力科学研究院武汉南瑞有限责任公司,武汉 30074
  • 2. 南瑞集团(国网电力科学研究院)有限公司,南京 211006||国网电力科学研究院武汉南瑞有限责任公司,武汉 30074||国网新疆电力有限公司检修公司,乌鲁木齐 830000
  • 折叠

摘要

Abstract

Transformer is one of the most important power transmission and transformation equipment in power sys-tem and its insulation status monitoring and fault identification are of great significance to the safe and stable opera-tion of power system.The partial discharge signal generated by the internal insulation deterioration of the transformer is currently one of the most effective criteria for evaluating the internal insulation status and identifying the fault type.In this paper,the ultrahigh frequency signal and ultrasonic signal under partial discharge are obtained by construct-ing four typical insulation defect models of transformer and setting up test platform for measurement.Throughout the analysis of two kinds of signals,two sets of characteristic parameters are extracted for ultrahigh frequency signals in both TRTD and PRPD modes,and a set of characteristic parameters are extracted for ultrasonic signals in TRTD mode.It is found after the feature fusion method of kernel principal component analysis together with support vector machine(KPCA-SVM)for information fusion that the recognition rate of information fusion is significantly improved compared to that of single information.

关键词

变压器/特高频/超声波/信息融合/故障识别

Key words

transformer/ultrahigh frequency/ultrasonic/information fusion/fault identification

引用本文复制引用

杨旭,周文,程林,罗传仙,张静,江翼..基于KPCA-SVM的变压器多源信息融合故障诊断研究[J].高压电器,2025,61(2):54-62,9.

基金项目

国家电网有限公司总部管理科技项目(超、特高压变压器油纸绝缘快速发展型故障检测与诊断关键技术研究).Project Supported by the State Grid Corporation Limited Headquarters Management Technology(Research on the Key Technology of Fault Detection and Diagnosis of Oil Paper Insulation of Super and UHV Transformers). (超、特高压变压器油纸绝缘快速发展型故障检测与诊断关键技术研究)

高压电器

OA北大核心

1001-1609

访问量6
|
下载量0
段落导航相关论文