首页|期刊导航|计算机工程与应用|结合移动对象发现和对比学习的无监督跟踪

结合移动对象发现和对比学习的无监督跟踪OA北大核心

Unsupervised Tracking Combining Moving Object Discovery and Contrastive Learning

中文摘要英文摘要

常规的深度学习跟踪方法需要使用大量人工注释的视频标签来完成对目标跟踪任务的监督学习,而无监督跟踪方法可以在未标注视频中进行模型训练,这有利于部署到实际场景中.传统的无监督跟踪方法严重依赖训练样本的空间信息探索,难以持续跟踪具有强烈运动变化的目标对象.提出一种基于循环一致性理论的无监督跟踪方法,采用无监督光流估计与动态规划发现移动目标,通过循环记忆学习方案构建内存队列来利用丰富的时间信息,并提出基于对比学习思想的方法完成对模板的更新.实验结果表明,提出的跟踪方法在VOT2016以及VOT2018数据集上的EAO分别达到了0.402和0.344,主要性能指标与一些主流监督学习方法的跟踪效果相当.

The conventional deep learning tracking methods require numerous manually annotated video labels to com-plete supervised learning for object tracking tasks,while unsupervised tracking methods can train models by using unla-beled videos,which is beneficial for deployment in real-world scenarios.Traditional unsupervised tracking methods heavily rely on exploring the spatial information of training samples,so it is difficult to track the target objects which have intense movement changes over a long period of time.This paper proposes an unsupervised tracking method based on the theory of cyclic consistency,which adopts unsupervised optical flow estimation and dynamic programming to discover the moving targets.In addition,for the purpose of utilizing the rich temporal information,a cyclic memory learning scheme is used to construct a memory queue,and a method based on contrastive learning is proposed to update the template.The experi-mental results show that the proposed tracking method achieves EAO of 0.402 and 0.344 on the VOT2016 and VOT2018 datasets respectively.The main performance indicators are comparable to some mainstream supervised learning methods in terms of tracking performance.

段苛苛;郑俊蓉;晏泽

辽宁大学 信息学院,沈阳 110036辽宁大学 信息学院,沈阳 110036辽宁大学 信息学院,沈阳 110036

计算机与自动化

目标跟踪无监督学习循环一致性移动对象发现对比学习

object trackingunsupervised learningcycle consistencymoving object discoverycontrastive learning

《计算机工程与应用》 2025 (4)

141-149,9

辽宁省科学技术计划面上项目(2023MS139).

10.3778/j.issn.1002-8331.2309-0453

评论